Skip to main content
Log in

Instability of enclosed horizons

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We point out that there are solutions to the scalar wave equation on \(1+1\) dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror’s Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle–Hawking–Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for ’t Hooft’s brick wall model while seeming to invalidate the picture in Maldacena’s ‘Eternal black holes in AdS’. It would thereby also support the validity of the author’s matter-gravity entanglement hypothesis and of the paper ‘Brick walls and AdS/CFT’ by the author and Ortíz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [also published as, Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

  2. Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP 4, 021 (2003). arXiv:hep-th/0106112

    Article  ADS  Google Scholar 

  3. ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)

    Article  ADS  Google Scholar 

  4. Mukohyama, S., Israel, W.: Black holes, brick walls and the Boulware state. Phys. Rev. D 58, 104005 (1998). arXiv:gr-qc/9806012

    Article  ADS  Google Scholar 

  5. Press, W., Teukolsky, S.: Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211 (1972)

    Article  ADS  Google Scholar 

  6. Eardley, D.M.: Death of white holes in the early universe. Phys. Rev. Lett. 33, 442 (1974)

    Article  ADS  Google Scholar 

  7. Blau, S.K., Guth, A.H.: The stability of the white hole horizon. (1989) (manuscript submitted to the Gravity Research Foundation). http://gravityresearchfoundation.org/pdf/awarded/1989/blau_guth

  8. Blau, S.K.: Dray ’t Hooft geometries and the death of white holes. Phys. Rev. D 39, 2901 (1989)

    Article  ADS  Google Scholar 

  9. Lake, K.: Reissner-Nordstrm-de Sitter metric, the third law, and cosmic censorship. Phys. Rev. D 19, 421 (1979)

    Article  ADS  Google Scholar 

  10. Wald, R.M., Ramaswamy, S.: Particle production by white holes. Phys. Rev. D 21, 2736 (1980)

    Article  ADS  Google Scholar 

  11. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  12. Hawking, S.W., Page, D.: Thermodynamics of black holes in anti de-Sitter space. Commun. Math. Phys. 87, 577 (1973)

    Article  ADS  Google Scholar 

  13. Davies, P.C.W.: Quantum vacuum friction. J. Opt. B Quantum Semiclass. Opt. 7, S40–S46 (2005)

    Article  ADS  Google Scholar 

  14. Wang, Q., Unruh, W.G.: Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D 89, 085009 (2014). arXiv:1312.4591

    Article  ADS  Google Scholar 

  15. Hartle, J.B., Hawking, S.W.: Path-integral derivation of black-hole radiance. Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  16. Israel, W.: Thermofield dynamics of black holes. Phys. Lett. A 57, 107 (1976)

    Article  ADS  Google Scholar 

  17. Wightman, A.S.: Introduction to some aspects of the relativistic dynamics of quantum fields. In: Lévy, M. (ed.) 1964 Cargèse Lectures in theoretical physics: high energy electromagnetic interactions and field theory. Gordon and Breach, New York (1967)

    Google Scholar 

  18. Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135 (1987)

    Article  ADS  Google Scholar 

  19. Kay, B.S.: Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes: especially black holes, time machines and a new semi-local vacuum concept. Journes Equations aux Drives Partielles IX-1 (2000). arXiv:gr-qc/0103056

  20. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991). Note that the uniqueness result in this paper was later strengthened in Kay B.S.: Sufficient conditions for quasifree states and an zimproved uniqueness theorem for quantum fields on spacetimes with horizons. J. Math. Phys. 34, 4519 (1993)

  21. Kay, B.S.: Quantum Fields in Time-Dependent Backgrounds and in Curved Space-times. University of London PhD thesis (1977)

  22. Jaffe, A., Ritter, G.: Reflection postivity and monotonicity. J. Math. Phys. 49, 052301 (2008). arXiv:0705.0712

    Article  ADS  Google Scholar 

  23. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  24. Kay, B.S.: The Casimir effect in quantum field theory. (Original title The Casimir effect without magic). Phys. Rev. D 20, 3052 (1979)

    Article  ADS  Google Scholar 

  25. Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34, 1174 (1966)

    Article  ADS  Google Scholar 

  26. Simpson, M., Penrose, R.: Internal instability in a Reissner-Nordström black hole. Int. J. Theor. Phys. 7, 183 (1973)

  27. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  28. Chandrasekhar, S., Hartle, J.B.: On crossing the Cauchy horizon of a Reissner-Nordström black-hole. Proc. R. Soc. A 384, 301 (1982)

  29. Hiscock, W.A.: Stress-energy tensor near a charged, rotating, evaporating black hole. Phys. Rev. D 15, 3054 (1977)

    Article  ADS  Google Scholar 

  30. Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875 (2003)

    Article  MATH  Google Scholar 

  31. Dafermos, M.: Stability and Instability of the Reissner-Nordstrom Cauchy horizon and the problem of uniqueness in general relativity. Contemp. Math. 350, 99 (2004). arXiv:gr-qc/0209052

    Article  Google Scholar 

  32. Kay, B.S., Lupo, U.: Non-existence of isometry-invariant Hadamard states for a Kruskal black hole in a box and for massless fields on \(1+1\) Minkowski spacetime with a uniformly accelerating mirror (to appear)

  33. Sewell, G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201 (1982)

    Article  ADS  Google Scholar 

  34. Hawking, S.W., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996, 2010)

  35. Kay, B.S.: Entropy defined, entropy increase and decoherence understood, and some black-hole puzzles solved (1998). arXiv:hep-th/9802172

  36. Kay, B.S.: Decoherence of macroscopic closed systems within Newtonian quantum gravity. Class. Quantum Gravit. 15, L89–L98 (1998). arXiv:hep-th/9810077

    Article  ADS  MATH  Google Scholar 

  37. Kay, B.S., Abyaneh, V.: Expectation values, experimental predictions, events and entropy in quantum gravitationally decohered quantum mechanics (2007). arXiv:0710.0992

  38. Kay, B.S. On the origin of thermality (2012). arXiv:1209.5125

  39. Kay, B.S.: Modern foundations for thermodynamics and the stringy limit of black hole equilibria (2012). arXiv:1209.5085

  40. Kay, B.S.: More about the stringy limit of black hole equilibria (2012). arXiv:1209.5110

  41. Kay, B.S., Ortíz, L.: Brick walls and AdS/CFT. J. Gen. Relativ. Gravit. 46, 1727 (2014). arXiv:1111.6429

    Article  ADS  Google Scholar 

  42. Arnsdorf, M., Smolin, L.: The Maldacena conjecture and Rehren duality (2001). arXiv:hep-th/0106073

  43. Rehren, K.-H.: Algebraic holography. Ann. Henri Poin caré 1, 607 (2000). arXiv:hep-th/9905179

    Article  ADS  MATH  Google Scholar 

  44. Czech, B., Karczmarek, J.L., Nogueira, F., Van Raamsdonk, M.: Rindler quantum gravity. Class. Quantum Gravit. 29, 235025 (2012). arXiv:1206.1323

    Article  ADS  Google Scholar 

  45. Parikh, M., Samantray, P.: Rindler-AdS/CFT (2012). arXiv:1211.7370

  46. Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 05, 036 (2011). arXiv:1102.0440

    Article  ADS  Google Scholar 

  47. de la Fuente A., Sundrum R.: Holography of the BTZ black hole, inside and out (2013). arXiv:1307.7738

  48. Avery S.G., Chowdhury B.D.: No holography for eternal AdS black holes (2013). arXiv:1312.3346

  49. Mathur S.: What is the dual of two entangled CFTs? (2014). arXiv:1402.6378

  50. Chowdhury B.D.: Limitations of holography (2014). arXiv:1405.4292

  51. Chowdhury B.D., Parikh M.K.: When UV and IR Collide: Inequivalent CFTs From Different Foliations Of AdS (2014). arXiv:1407.4467

Download references

Acknowledgments

I wish to thank an anonymous referee of the paper [41] for asking a question which stimulated some of the work reported here. I thank Eli Hawkins, Atsushi Higuchi, Hugo Ferreira and Jorma Louko for helpful remarks and criticisms of an earlier version of this paper. I thank Umberto Lupo for a critical reading of that earlier version and also for assistance with, and checks of, many of my calculations and also for assistance with Endnote \({9}\). I also wish to thank Chris Fewster for a valuable discussion and, in particular, for a specific suggestion (indicated in a parenthetical remark above) which helped me to make the present ‘silver-plated stress-energy almost-singularity result’ considerably stronger than a previous version. I also thank Borun Chowdhury for drawing to my attention the references [48, 49] and for an interesting discussion on the connection between the work in those references and the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard S. Kay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kay, B.S. Instability of enclosed horizons. Gen Relativ Gravit 47, 31 (2015). https://doi.org/10.1007/s10714-015-1858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1858-8

Keywords

Navigation