Skip to main content
Log in

Progress in effective field theory approach to the binary inspiral problem

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article I review the progress made in understanding the binary in spiral problem using Effective Field Theory technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This talk is only concerned with classical relativity.

  2. This term is perhaps too strong a statement, as geometry always plays a role. The word demi-geometric would probably be more appropriate.

  3. It would appear to me, that the amount of effort going into analytic calculation has been dwarfed by the numerical effort especially within the United States. This is just the perception of an outsider and is completely anecdotal.

  4. In the old days these two theories would be called “non-renormalizable” and “renormalizable” respectively.

  5. Through out this article we will be using units. \(c=\hbar =1\).

  6. This is the case in QCD when one tries of determine the dynamics of low energy Goldstone bosons (pions). In this case one has to fix the coefficients \(C^\prime _i\) by using data.

  7. It is not always true that one can expand the propagators, in which case the action becomes non-local. In the non-relativistic case (PN) this leads to an action which is non-local in space, while in the EMRI case it’s non-local in time as well.

  8. We use this term, much to the dismay of many a referee, even when dealing with classical theories.

  9. In the case of classical EFT this is typically not true. For instance in the PN expansion every log is accompanied by factors of \(v\). Thus while the logs may dominate the terms at some fixed order in \(v\), re-summation does not improve the accuracy of the prediction.

  10. In the language of asymptotic expansions these correspond to the near and far fields.

  11. These diagrams which be two particle irreducible to avoid double counting. That is, one should not be able to disconnect the diagram by cutting the two matter worldliness.

  12. I thank Gerhard Schaefer for conversations on this result.

  13. For an alternative approach see [44, 45].

  14. Indeed we can choose to completely absorb the effect of these local operators in the correlation functions of the \(Q's\).

  15. In linear response theory the relevant correlator is retarded. However, away from the poles the retarded and time ordered products are identical.

  16. The time ordered product and the retarded correlator differ only in their treatment of the poles.

  17. Naively this amplitude is zero, however, if an external momentum is complexified this is not longer true. This complexification is necessary for the BCFW construction of recursion relations for the n-point on-shell S matrix element.

References

  1. Gupta, S.N.: Phys. Rev. 96, 1683 (1954)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Kraichnan, R.: Phys. Rev. 98, 1118 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Feynman. R.P.: In: Brian Hatfield (ed. ) Feynman Lectures on Gravitation. Addison-Wesley (1995)

  4. Weinberg, S.: Phys. Rev. 135, B1049 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  5. Duff, M.J.: Phys. Rev. D. 7, 2317 (1973)

    Article  ADS  Google Scholar 

  6. Hiida, K., Okamura, H.: Prog. Theor. Phys. 47, 1743 (1972)

    Article  ADS  Google Scholar 

  7. Iwasaki, Y.: Prog. Theor. Phys. 46, 1587 (1971)

    Article  ADS  Google Scholar 

  8. Iwasaki, Y.: Lett Nuovo Cim 1S2, 783 (1971)

    Article  Google Scholar 

  9. Bauer, C.W., Fleming, S., Pirjol, D., Rothstein, I.Z., Stewart, I.W.: Phys. Rev. D. 66, 014017 (2002). [hep-ph/0202088]

    Article  ADS  Google Scholar 

  10. Goldberger, W., Rothstein, I.: Phys. Rev. D. 73, 104029 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Goldberger, W.D., Rothstein, I.Z.: Gen. Relativ. Gravit. 38, 1537 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. [Int. J. Mod. Phys. D 15, 2293 (2006)] For reviews see W. D. Goldberger, hep-ph/0701129, and, S. Foffa and R. Sturani, arXiv:1309.3474 [gr-qc]

  13. Chu, Y.-Z.: Phys. Rev. D. 79, 044031 (2009). [ arXiv:0812.0012 [gr-qc]]

  14. Rothstein, I.Z.: TASI lectures on effective field theories. arXiv:hep-ph/0308266

  15. Grinstein, B., Rothstein, I.Z.: Phys. Rev. D. 57, 78 (1998). [ hep-ph/9703298]

  16. Wardell, B., Galley, C. R., Zenginoglu, A., Casals, M., Dolan, S. R., Ottewill, A.C.: arXiv:1401.1506 [gr-qc]

  17. Zenginoglu, A., Galley, C.R.: Phys. Rev. D. 86, 064030 (2012). [ arXiv:1206.1109 [gr-qc]]

  18. Galley, C.R., Hu, B.L.: Phys. Rev. D. 79, 064002 (2009). [ arXiv:0801.0900 [gr-qc]]

  19. Galley, C.R., Tiglio, C.R.: Phys. Rev. D. 79, 124027 (2009). [ arXiv:0903.1122 [gr-qc]]

  20. Birnholtz, O., Hadar, S., Kol, B.: Phys. Rev. D. 88, 104037 (2013). [ arXiv:1305.6930 [hep-th]]

  21. Foffa, S., Sturani, R.: Phys. Rev. D. 84, 044031 (2011). [ arXiv:1104.1122 [gr-qc]]

  22. Foffa, S., Sturani, R.: Phys. Rev. D. 87(6), 064011 (2013). [ arXiv:1206.7087 [gr-qc]]

  23. Kol, B., Smolkin, M.: Phys. Rev. D. 77, 064033 (2008). [ arXiv:0712.2822 [hep-th]]

  24. Damour, T.: The problem of motion in Newtonian and Einsteinian gravity. In Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation, pp. 128–198. Cambridge University Press, Cambridge, New York (1987)

  25. Damour, T., Jaranowski, P., Schafer, G.: arXiv:1401.4548 [gr-qc]

  26. Porto, R.A.: Phys. Rev. D. 73, 104031 (2006)

    Article  ADS  Google Scholar 

  27. Porto, R.A., Rothstein, I.Z.: Phys. Rev. Lett. 97, 021101 (2006). [gr-qc/0604099]

    Article  ADS  Google Scholar 

  28. Steinhoff, J., Hergt, S., Schaefer, G.: Phys. Rev. D. 77, 081501 (2008). [ arXiv:0712.1716 [gr-qc]]

  29. Porto, R. A., Rothstein, I. Z.: arXiv:0712.2032 [gr-qc]

  30. Porto, R.A., Rothstein, I.Z.: Phys. Rev. D. 78, 044012 (2008). [Erratum-ibid. D 81, 029904 (2010)] [ arXiv:0802.0720 [gr-qc]]

  31. Porto, R.A., Rothstein, I.Z.: Phys. Rev. D. 78, 044013 (2008). [Erratum-ibid. D 81, 029905 (2010)] [ arXiv:0804.0260 [gr-qc]]

  32. Steinhoff, J., Hergt, S., Schaefer, G.: Phys. Rev. D. 78, 101503 (2008). [ arXiv:0809.2200 [gr-qc]]

  33. Hartung, J., Steinhoff, J.: Annalen Phys. 523, 919 (2011). [ arXiv:1107.4294 [gr-qc]]

  34. Levi, M.: Phys. Rev. D. 85, 064043 (2012). [ arXiv:1107.4322 [gr-qc]]

  35. Porto, R.A., Ross, A., Rothstein, I.Z.: JCAP 1103, 009 (2011). [ arXiv:1007.1312 [gr-qc]]

  36. Porto, R.A., Ross, A., Rothstein, I.Z.: JCAP 1209, 028 (2012). [ arXiv:1203.2962 [gr-qc]]

  37. Thorne, K.: Rev. Mod. Phys. 52, 299 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  38. Goldberger, W.D., Ross, A.: Phys. Rev. D. 81, 124015 (2010). [ arXiv:0912.4254 [gr-qc]]

  39. Fujita, R.: Prog. Theor. Phys. 128, 971 (2012). [ arXiv:1211.5535 [gr-qc]]

  40. Goldberger, W. D., Ross, A., Rothstein, I. Z.: arXiv:1211.6095 [hep-th]

  41. Blanchet, L., Detweiler, S.L., Le Tiec, A., Whiting, B.F.: Phys. Rev. D. 81, 084033 (2010). [ arXiv:1002.0726 [gr-qc]]

  42. Goldberger, W.D., Rothstein, I.Z.: Phys. Rev. D. 73, 104030 (2006). [ hep-th/0511133]

  43. Porto, R.A.: Phys. Rev. D. 77, 064026 (2008). [ arXiv:0710.5150 [hep-th]]

  44. Galley, C.R.: Phys. Rev. Lett. 110(17), 174301 (2013). [ arXiv:1210.2745 [gr-qc]]

  45. Grozdanov, S., Polonyi, J.: arXiv:1305.3670 [hep-th]

  46. Damour, T., Nagar, A.: Phys. Rev. D. 80, 084035 (2009). [ arXiv:0906.0096 [gr-qc]]

  47. Binnington, T., Poisson, E.: Phys. Rev. D. 80, 084018 (2009). [ arXiv:0906.1366 [gr-qc]]

  48. Kol, B., Smolkin, M.: JHEP 1202, 010 (2012). [ arXiv:1110.3764 [hep-th]]

  49. Chakrabarti, S., Delsate, Tr, Steinhoff, J.: Phys. Rev. D. 88, 084038 (2013). [ arXiv:1306.5820 [gr-qc]]

  50. Chakrabarti, S., Delsate, Tr., Steinhoff, J.: arXiv:1304.2228 [gr-qc]

  51. Endlich, S., Nicolis, A., Porto, R.A., Wang, J.: Phys. Rev. D. 88, 105001 (2013). [ arXiv:1211.6461 [hep-th]]

  52. Goldberger, W., Rothstein, I.Z.: unpublished work

  53. For a review and references see, Bern, Z., Dixon, L. J., Kosower, D. A.: Annals Phys. 322, 1587 (2007) [ arXiv:0704.2798 [hep-ph]]

  54. Britto, R., Cachazo, F., Feng, B.: Nucl. Phys. B. 715, 499 (2005). [ hep-th/0412308]

  55. Britto, R., Cachazo, F., Feng, B., Witten, E.: Phys. Rev. Lett. 94, 181602 (2005). [ hep-th/0501052]

  56. Benincasa, P., Cachazo, F.: arXiv:0705.4305 [hep-th]

  57. Bern, Z., Dixon, L.J., Dunbar, D.C., Kosower, D.A.: Nucl. Phys. B. 425, 217 (1994). [ hep-ph/9403226]

  58. Bern, Z., Dixon, L.J., Dunbar, D.C., Kosower, D.A.: Nucl. Phys. B. 435, 59 (1995). [ hep-ph/9409265]

  59. Neill, D., Rothstein, I.Z.: Nucl. Phys. B. 877, 177 (2013). [ arXiv:1304.7263 [hep-th]]

  60. Yolcu, C., Rothstein, I.Z., Deserno, M.: Euro. Phys. Lett. 96, 20003 (2011)

    Article  ADS  Google Scholar 

  61. Yolcu, Cem, Rothstein, Ira Z., Deserno, Markus: Phys. Rev. E. 85, 011140 (2012)

    Article  ADS  Google Scholar 

  62. Yolcu, C., Deserno, M.: Phys. Rev. E86, 031906 (2012)

    ADS  Google Scholar 

  63. Rothstein, I.Z.: Nucl. Phys. B. 862, 576 (2012). [ arXiv:1111.0533 [hep-th]]

  64. Galley, C.R., Leibovich, A.K., Rothstein, I.Z.: Phys. Rev. Lett. 105, 094802 (2010). [ arXiv:1005.2617 [gr-qc]]

  65. Galley, C.R., Leibovich, A.K., Rothstein, I.Z.: Phys. Rev. Lett. 109, 029502 (2012). [ arXiv:1206.4773 [gr-qc]]

  66. Chu, Y.-Z., Goldberger, W.D., Rothstein, I.Z.: JHEP 0603, 013 (2006). [ hep-th/0602016]

  67. Chu, Y.-Z., Goldberger, W.D., Rothstein, I.Z.: JHEP 0909, 104 (2009). [ arXiv:0908.3490 [hep-th]]

  68. Chu, Y.-Z., Goldberger, W.D., Rothstein, I.Z.: Phys. Rev. D. 77, 064033 (2008). [ arXiv:0712.2822 [hep-th]]

  69. Vaidya, V.: arXiv:1304.7475 [quant-ph]

Download references

Acknowledgments

I would like to thank the organizers of GR20-Amaldi10 for the invitation to speak and for their gracious hospitality. I would also like to thank my collaborators on this subject, Walter Goldberger and Rafael Porto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Z. Rothstein.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothstein, I.Z. Progress in effective field theory approach to the binary inspiral problem. Gen Relativ Gravit 46, 1726 (2014). https://doi.org/10.1007/s10714-014-1726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1726-y

Keywords

Navigation