Skip to main content
Log in

The Sagnac effect in conformal Weyl gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the Sagnac effect, representing the difference in travel time or phase shift observed for relativistic matter or light beams counter-propagating in a rotating interferometer. This is done for the Schwarzschild-like and Kerr-like vacuum solutions of conformal gravity which describe the field around a massive static and rotating object respectively, in the fourth order theory. To do this we employ the formal analogy between the Sagnac and Aharonov–Bohm effects that has been used earlier to study this effect in flat and curved spacetimes in general relativity. In particular we show that the linear term in the static metric of conformal gravity has a diminishing effect on the Sagnac time delay. Moreover using the expression for the Sagnac effect in the rotating Kerr-like spacetime, we show that the detection of the Weyl gravity contributions to the Sagnac time delay in the case of the Earth, lies beyond the capability of current experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A detailed pedagogical approach towards Cattaneo’s work on the splitting of spacetime and the development of the gravitomagnetic analogy of the Aharonov–Bohm effect can be found in Appendix A of Ref. [10].

  2. Note that the result is independent on the choice of \(\bar{r}\) and \(s\) [which should still satisfy (29) for the chosen values of \(u\) and \(v\)] since for equatorial orbits \(y = \cos \theta = 0\).

References

  1. Lodge, O.J.: Aberration problems. A discussion concerning the motion of the ether near the Earth, and concerning the connexion between ether and gross matter; with some new experiments. Philos. Trans. R. Soc. Lond. 184, 727–804 (1893)

    Article  ADS  MATH  Google Scholar 

  2. Sagnac, M.G.: Luminous ether demonstrated by the effect of relative wind of ether in a uniform rotation of an interferometer. C. R. Acad. Sci. Paris 157, 708–710 (1913)

    Google Scholar 

  3. Goy, F., Selleri, F.: Time on a rotating platform. Found. Phys. Lett. 10, 17–29 (1997)

    Article  MathSciNet  Google Scholar 

  4. Vigier, J.P.: New non-zero photon mass interpretation of the Sagnac effect as direct experimental justification of the Langevin paradox. Phys. Lett. A 234, 75–85 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Anastasowksi, P.K., et al.: Self-inconsistencies of the U(1) theory of electrodynamics: Michelson interferometry. Found. Phys. Lett. 12, 579–584 (1999)

    Article  Google Scholar 

  6. Anandan, J.: Sagnac effect in relativistic and non-relativistic physics. Phys. Rev. D. 24, 338–346 (1981)

    Article  ADS  Google Scholar 

  7. Weber, T.A.: Measurements on a rotating frame in relativity, and the Wilson and Wilson experiment. Am. J. Phys. 65, 946–953 (1997)

    Article  ADS  Google Scholar 

  8. Rizzi, G., Tartaglia, A.: Speed of light on rotating platforms. Found. Phys. 28, 1663–1683 (1998)

    Article  MathSciNet  Google Scholar 

  9. Rodrigues Jr, W.A., Sharif, M.: Rotating frames in SRT: the sagnac effect and related issues. Found. Phys. 31, 1767–1783 (2001)

    Article  MathSciNet  Google Scholar 

  10. Rizzi, G., Ruggiero, M.L.: The relativistic Sagnac effect: two derivations. arXiv:gr-qc/0305084 (2003)

  11. Rizzi, G., Ruggiero, M.L.: A direct kinematical derivation of the relativistic Sagnac effect for light or matter beams. Gen. Relativ. Gravit. 35, 2129–2136 (2003)

    Google Scholar 

  12. Rostomyan, A.H., Rostomyan, A.M.: X-ray resonators. 3. Applications. Phys. Status Solidi A 126, 29–39 (1991)

    Article  ADS  Google Scholar 

  13. Zimmermann, J.E., Mercereau, J.E.: Compton wavelength of superconducting electrons. Phys. Rev. Lett. 14, 887–888 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  14. Werner, S.A., Staudenmann, J.L., Colella, R.: Effect of Earth’s rotation on the quantum-mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1106 (1979)

    Article  ADS  Google Scholar 

  15. Riehle, F., Kisters, Th, Witte, Th, Helmcke, J., Bordé, ChJ: Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177–180 (1991)

    Article  ADS  Google Scholar 

  16. Hasselbach, F., Nicklaus, M.: Sagnac experiment with electrons - Observation of the rotational phase-shift of electron waves in vacuum. Phys. Rev. A. 48, 143–151 (1993)

    Article  ADS  Google Scholar 

  17. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967)

    Article  ADS  Google Scholar 

  18. Chow, W.W., Gea-Banacloche, J., Pedrotti, L.M., Sanders, V.E., Schleich, W.P., Scully, M.O.: The ring laser gyro. Rev. Mod. Phys. 57, 61–104 (1985)

    Article  ADS  Google Scholar 

  19. Stedman, G.E.: Ring-laser tests of fundamental physics and geophysics. Rep. Prog. Phys. 60, 615–688 (1997)

    Article  ADS  Google Scholar 

  20. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Rizzi, G., Ruggiero, M.L.: The Sagnac phase shift suggested by the Aharonov-Bohm effect for relativistic matter beams. Gen. Relativ. Gravit. 35, 1745–1760 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Cattaneo, C.: General relativity—relative standard mass, momentum, energy and gravitational field in a general system of reference. Il Nuovo Cimento 10, 318–337 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ruggiero, M.L.: The Sagnac effect in curved space-times from an analogy with the Aharonov-Bohm effect. Gen. Relativ. Gravit. 37, 1845–1855 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Tartaglia, A.: General relativistic corrections to the Sagnac effect. Phys. Rev. D. 58, 064009 (1998)

    Article  ADS  Google Scholar 

  25. Hu, P.H., Wang, Y.J.: Sagnac effect in the Kerr-Newman and Reissner-Nordstrom fields. Chin. Phys. Lett. 23, 2341–2343 (2006)

    Article  ADS  Google Scholar 

  26. Mannheim, P.D., Kazanas, D.: Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. Astrophys. J. 342, 635–638 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Riegert, R.J.: Birkhoff’s theorem in conformal gravity. Phys. Rev. Lett. 53, 315–318 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nandi, K.K., Alsing, P.M., Evans, J.C., Nayak, T.B.: Brans-Dicke corrections to the gravitational Sagnac effect. Phys. Rev. D 63, 084027 (2001)

    Article  ADS  Google Scholar 

  29. Okawara, H., Yamada, K., Asada, H.: Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity. Phys. Rev. Lett. 109, 231101 (2012)

    Article  ADS  Google Scholar 

  30. Okawara, H., Yamada, K., Asada, H.: Possible latitude effects of Chern-Simons gravity on quantum interference. Phys. Rev. D 87, 084038 (2013)

    Article  ADS  Google Scholar 

  31. Mannheim, P.D., Kazanas, D.: Solutions to the Reissner-Nordstrom, Kerr, and Kerr-Newman problems in 4th-order conformal Weyl gravity. Phys. Rev. D 44, 417–423 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mannheim, P.D.: Conformal cosmology with no cosmological constant. Gen. Relativ. Gravit. 22, 289–298 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Mannheim, P.D.: Conformal gravity and the flatness problem. Astrophys. J. 391, 429–432 (1992)

    Article  ADS  Google Scholar 

  34. Mannheim, P.D., Kazanas, D.: Newtonian limit of conformal gravity and the lack of necessity of the 2nd-order Poisson equation. Gen. Relativ. Gravit. 26, 337–361 (1994)

    Article  ADS  Google Scholar 

  35. Said, J.L., Sultana, J., Zarb Adami, K.: Exact static cylindrical solution to conformal Weyl gravity. Phys. Rev. D 85, 104054 (2012)

    Article  ADS  Google Scholar 

  36. Said, J.L., Sultana, J., Zarb Adami, K.: Charged cylindrical black holes in conformal gravity. Phys. Rev. D 86, 104009 (2012)

    Article  ADS  Google Scholar 

  37. Bekenstein, J.D.: Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  38. Mannheim, P.D.: Linear potentials and galactic rotation curves. Astrophys. J. 419, 150–154 (1993)

    Article  ADS  Google Scholar 

  39. Mannheim, P.D.: Are galactic rotation curves really flat? Astrophys. J. 479, 659–664 (1997)

    Article  ADS  Google Scholar 

  40. Mannheim, P.D., O’Brien, J.G.: Impact of a global quadratic potential on galactic rotation curves. Phys. Rev. Lett. 106, 121101 (2011)

    Article  ADS  Google Scholar 

  41. Mannheim, P.D., O’Brien, J.G.: Fitting galactic rotation curves with conformal gravity and a global quadratic potential. Phys. Rev. D. 85, 124020 (2012)

    Article  ADS  Google Scholar 

  42. Scarpa, R., Marconi, G., Gilmozzi, R.: Using globular clusters to test gravity in the weak acceleration regime. Astron. Astrophys. 405, L15–L18 (2003)

    Article  ADS  Google Scholar 

  43. Kazanas, D.: Cosmological inflation: a personal perspective. In: Contopoulos, G., Patsis, P.A. (eds.) Chaos in Astronomy, Conference 2007. Astrophysics and Space Science Proceedings, pp. 485–496. Springer, Berlin (2009)

    Google Scholar 

  44. Edery, A., Paranjape, M.B.: Classical tests for Weyl gravity: deflection of light and time delay. Phys. Rev. D 58, 024011 (1998)

    Article  ADS  Google Scholar 

  45. Amore, P., Arceo, S., Fernandez, F.M.: Analytical formulas for gravitational lensing: higher order calculation. Phys. Rev. D 74, 083004 (2006)

    Article  ADS  Google Scholar 

  46. Sultana, J., Kazanas, D.: Bending of light in conformal Weyl gravity. Phys. Rev. D 81, 127502 (2010)

    Article  ADS  Google Scholar 

  47. Sultana, J., Kazanas, D., Said, J.L.: Conformal Weyl gravity and perihelion precession. Phys. Rev. D 86, 084008 (2012)

    Article  ADS  Google Scholar 

  48. Aharonov, Y., Carmi, G.: Quantum aspects of the equivalence principle. Found. Phys. 3, 493–498 (1973)

    Article  ADS  Google Scholar 

  49. Ashtekar, A., Magnon, A.: The Sagnac effect in general relativity. J. Math. Phys. 16, 341–344 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sakurai, J.J.: Comments on quantum-mechanical interference due to the Earth’s rotation. Phys. Rev. D 21, 2993–2994 (1980)

    Article  ADS  Google Scholar 

  51. Semon, M.D.: Experimental-verification of an Aharonov-Bohm effect in rotating reference frames. Found. Phys. 12, 49–57 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  52. Papini, G.: Particle wave functions in weak gravitational fields. Nuovo Cimento B 52, 136–137 (1967)

    Article  ADS  Google Scholar 

  53. Wisnisvesky, D., Aharonov, Y.: Nonlocal effects in classical and quantum theories. Ann. Phys. 45, 479–492 (1967)

    Article  ADS  Google Scholar 

  54. Stodolsky, L.: Matter and light-wave interferometry in gravitational-fields. Gen. Relativ. Gravit. 11, 391–405 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  55. Anandan, J.: Gravitational and rotational effects in quantum interference. Phys. Rev. D. 15, 1448–1457 (1977)

    Article  ADS  Google Scholar 

  56. Kajari, E., Buser, M., Feiler, C., Schleich, W.P.: Rotation in relativity and the propagation of light. Riv. Nuovo Cimento 32, 339–438 (2009)

    Google Scholar 

  57. Cohen, J.M., Mashhoon, B.: Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A. 181, 353–358 (1993)

    Article  ADS  Google Scholar 

  58. Kajari, E., et al.: Sagnac effect of Godel’s Universe. Gen. Relativ. Gravit 36, 2289–2316 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Carter, B.: Black hole equilibrium states. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes, Proceedings of the Les Houches School of Physics, Les Houches, France, 1972, pp. 57–214. Gordon and Breach, New York (1973)

  60. Straumann, N.: General Relativity and Relativistic Astrophysics. Springer, Berlin (1984)

    Book  Google Scholar 

  61. Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkrper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)

    MATH  Google Scholar 

  62. de Sitter, W.: On Einstein’s theory of gravitation, and its astronomical consequences. Mon. Not. R. Astron. Soc. 77, 155–184 (1916)

    ADS  Google Scholar 

  63. Schreiber, K.U., et al.: How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope. Phys. Rev. Lett. 107, 173904 (2011)

    Article  ADS  Google Scholar 

  64. Bosi, F., et al.: Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Phys. Rev. D 84, 122002 (2011)

    Article  ADS  Google Scholar 

  65. Tartaglia, A.: Experimental determination of gravitomagnetic effects by means of ring lasers. arXiv:1212.2880 (gr-qc)(2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultana, J. The Sagnac effect in conformal Weyl gravity. Gen Relativ Gravit 46, 1710 (2014). https://doi.org/10.1007/s10714-014-1710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1710-6

Keywords

Navigation