Skip to main content
Log in

Electromagnetic field and cosmic censorship

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky’s solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. However, all the relations starting with Eq. (2), including the separation and the asymptotic solutions, are meaningful/valid for the Kerr–Newman metric (which is also of Petrov type D) as well, since the latter is obtained from Kerr by replacing \(\Delta \) with \(r^2-2Mr+a^2+Q^{2}\) (where \(Q^{2}\) can be \(Q_{e}^{2}+Q_{m}^{2}\) if the black hole has electric charge \(Q_{e}\) and magnetic charge \(Q_{m}\)); in other words, \(Q\) does not appear outside \(\Delta \), including the derivatives of \(\Delta \). Hence it does not appear in the derivatives of the metric, where it might have other contribution to the field equations. On the other hand, the electromagnetic field carries no charge, hence the free field will not couple to the field of the black hole, so no \(Q\) terms will come from there either.

References

  1. Penrose, R.: Gravitational collapse : the role of general relativity. Riv. Nuovo Cimento, Numero speciale 1, 252–276 (1969)

    ADS  Google Scholar 

  2. Penrose, R.: Singularities and time-asymmetry. In: Wald, R.M. (ed.) General relativity: an Einstein centenary survey, pp. 581–638. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  3. Wald, R. M.: Gravitational Collapse and Cosmic Censorship, arXiv:gr-qc/9710068 (1997).

  4. Penrose, R.: The question of cosmic censorship. In: Wald, R.M. (ed.) Black Holes and Relativistic Stars, pp. 103–122. The University of Chicago Press, Chicago (1998)

    Google Scholar 

  5. Joshi, P.S.: Cosmic censorship: a current perspective. Mod. Phys. Lett. A 17, 1067–1079 (2002)

    Article  ADS  MATH  Google Scholar 

  6. Mazur, P.O.: Proof of uniqueness of the Kerr–Newman black hole solution. J. Phys. A 15, 3173–3180 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Jacobson, T., Sotiriou, T.P.: Destroying black holes with test bodies. J. Phys. Conf. Ser. 222, 012041 (2010)

    Article  ADS  Google Scholar 

  8. Wald, R.M.: Gedanken experiments to destroy a black hole. Ann. Phys. 82, 548–556 (1974)

    Article  ADS  Google Scholar 

  9. Hiscock, W.A.: Magnetic charge, black holes and cosmic censorship. Ann. Phys. 131, 245–268 (1981)

    Article  ADS  Google Scholar 

  10. Semiz, İ.: Dyonic Kerr–Newman black holes, complex scalar field and cosmic censorship. Gen. Relativ. Gravit. 43, 833–846 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bekenstein, J.D., Rosenzweig, C.: Stability of the black hole horizon and the Landau ghost. Phys. Rev. D 50, 7239–7243 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hod, S.: Black-hole polarization and cosmic censorship. Phys. Rev. D 60, 104031 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hubeny, V.E.: Overcharging a black hole and cosmic censorship. Phys. Rev. D 59, 064013 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hod, S.: Cosmic censorship, area theorem, and self-energy of particles. Phys. Rev. D 66, 024016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jacobson, T., Sotiriou, T.P.: Over-spinning a black hole with a test body. Phys. Rev. Lett. 103, 141101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. de Felice, F., Yunqiang, Y.: Turning a black hole into a naked singularity. Class. Quant. Gravit. 18, 1235–1244 (2001)

    Article  ADS  MATH  Google Scholar 

  17. Barausse, E., Cardoso, V., Khanna, G.: Testing the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-force. Phys. Rev. D 84, 104006 (2011)

    Article  ADS  Google Scholar 

  18. Richartz, M., Saa, A.: Challenging the weak cosmic censorship conjecture with charged quantum particles. Phys. Rev. D 84, 104021 (2011)

    Article  ADS  Google Scholar 

  19. Isoyama, S., Sago, N., Tanaka, N.: Cosmic censorship in overcharging a Reissner–Nordstrm black hole via charged particle absorption. Phys. Rev. D 84, 124024 (2011)

    Article  ADS  Google Scholar 

  20. Toth, G.Z.: Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes. Gen. Relativ. Gravit. 44, 2019–2035 (2012)

    Article  ADS  MATH  Google Scholar 

  21. Saa, A., Santarelli, R.: Destroying a near-extremal Kerr–Newman black hole. Phys. Rev. D 84, 027501 (2011)

    Article  ADS  Google Scholar 

  22. Matsas, G.E.A., da Silva, A.R.R.: Overspinning a nearly extreme charged black hole via a quantum tunneling process. Phys. Rev. Lett. 99, 181301 (2007)

    Article  ADS  Google Scholar 

  23. Richartz, M., Saa, A.: Overspinning a nearly extreme black hole and the weak cosmic censorship conjecture. Phys. Rev. D 78, 081503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Matsas, G.E.A., Richartz, M., Saa, A., da Silva, A.R.R., Vanzella, D.A.T.: Can quantum mechanics fool the cosmic censor? Phys. Rev. D 79, 101502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hod, S.: Return of the quantum cosmic censor. Phys. Lett. B 668, 346–349 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hod, S.: Weak cosmic censorship: as strong as ever. Phys. Rev. Lett. 100, 121101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hod, S.: Cosmic censorship: formation of a shielding horizon around a fragile horizon. Phys. Rev. D 87, 024037 (2013)

    Article  ADS  Google Scholar 

  28. Gao, S., Zhang, Y.: Destroying extremal Kerr–Newman black holes with test particles. Phys. Rev. D 87, 044028 (2013)

    Article  ADS  Google Scholar 

  29. Gao, S., Zhang, Y.: Testing cosmic censorship conjecture near extremal black holes with cosmological constants, arXiv:1309.2027 (2013).

  30. Düztaş, K., Semiz, İ.: Cosmic censorship, black holes and integer-spin test fields. Phys. Rev. D 88, 064043 (2013)

    Article  ADS  Google Scholar 

  31. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  32. Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635–647 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  33. Press, W.H., Teukolsky, S.A.: Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649–673 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  34. Teukolsky, S.A., Press, W.H.: Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443–461 (1974)

    Article  ADS  Google Scholar 

  35. Fackerell, E.D., Ipser, J.R.: Weak electromagnetic field around a rotating black hole. Phys. Rev. D 5, 2455–2458 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  36. Misner, C.W.: Interpretation of gravitational-wave observations. Phys. Rev. Lett. 28, 994–997 (1972)

    Article  ADS  Google Scholar 

  37. Press, W.H., Teukolsky, S.A.: Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank İ Semiz for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koray Düztaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düztaş, K. Electromagnetic field and cosmic censorship. Gen Relativ Gravit 46, 1709 (2014). https://doi.org/10.1007/s10714-014-1709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1709-z

Keywords

Navigation