Skip to main content
Log in

On the energy-momentum and spin tensors in the Riemann–Cartan space

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

General classical theories of material fields in an arbitrary Riemann–Cartan space are considered. For these theories, with the help of equations of balance, new non-trivially generalized, manifestly generally covariant expressions for canonical energy-momentum and spin tensors are constructed in the cases when a Lagrangian contains (a) an arbitrary set of tensorial material fields and their covariant derivatives up to the second order, as well as (b) the curvature tensor and (c) the torsion tensor with its covariant derivatives up to the second order. A non-trivial manifestly generally covariant generalization of the Belinfante symmetrization procedure, suitable for an arbitrary Riemann–Cartan space, is carried out. A covariant symmetrized energy-momentum tensor is constructed in a general form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use notations and conventions of the paper [15].

  2. Different modifications of these basic EMT both in the Riemann spacetime and in the Riemann–Cartan space were considered in the Refs. [6, 7, 10, 16].

References

  1. Adak, M.: Non-minimally coupled Dirac equation with torsion: Poincaré gauge theory of gravity with even and odd parity terms. Class. Quantum Gravity 29(9), 095006 [12 pp] (2012)

    Google Scholar 

  2. Belinfante, F.J.: On the spin angular momentum of mesons. Physica 6(9), 887–898 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  3. Belinfante, F.J.: On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7(5), 449–474 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bhattacharjee, S., Chatterjee, A.: Gauge invariant coupling of fields to torsion: a string inspired model. Phys. Rev. D 83(10), 106007 [12 pp] (2011)

    Google Scholar 

  5. Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space-time. Ann. inst. H. Poincaré (A) Phys. théor. 9(2):109–141 (1968)

    Google Scholar 

  6. Hannibal, L.: Conserved energy-momentum as a class of tensor densities. J. Phys. A 29(23), 7669–7685 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Hecht, R., Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Improved energy-momentum currents in metric-affine spacetime. Phys. Lett. A 172(1–2), 13–20 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hehl, F.W.: Spin and torsion in general relativity: I. Foundations. Gen. Relativ. Gravit 4(4), 333–349 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hehl, F.W.: Spin and torsion in general relativity: II. Geometry and field equations. Gen. Relativ. Gravit 5(5), 491–516 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hehl, F.W.: On the energy tensor of spinning massive matter in classical field theory and general relativity. Rep. Math. Phys. 9(1), 55–82 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48(3), 393–416 (1976)

    Google Scholar 

  12. Itin, Y., Hehl, F.W.: Maxwell s field coupled nonminimally to quadratic torsion: axion and birefringence. Phys. Rev. D 68(12), 127701 [4 pp] (2003)

    Google Scholar 

  13. Kopczyński, W., McCrea, J.D., Hehl, F.W.: The metric and the canonical energy-momentum currents in the Poincaré gauge theory of gravitation. Phys. Lett. A 135(2), 89–91 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lompay, R.R., Petrov, A.N.: Covariant differential identities and conservation laws in metric-torsion theories of gravitation. II. Manifestly covariant theories. J. Math. Phys. 54(10), 102504 [39 pp] (2013). E-print arXiv:1309.5620 [gr-qc]

  15. Lompay, R.R., Petrov, A.N.: Covariant differential identities and conservation laws in metric-torsion theories of gravitation. I. General consideration. J. Math. Phys. 54(6), 062504 [30 pp] (2013)

    Google Scholar 

  16. Mielke, E.W., Hehl, F.W., McCrea, J.D.: Belinfante type invariance of the Noether identities in a Riemannian and Weitzenböck spacetime. Phys. Lett. A 140(7–8), 368–372 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. Penrose, R.: Conformal treatment of infinity. Gen. Relativ. Gravit 43(3), 901–922 (2011). Reprinted from Ref. [18]

    Google Scholar 

  18. Penrose, R.: Conformal treatment of infinity. In: DeWitt, C., DeWitt, B. (eds.) Relativity, Groups and Topology. Gordon and Breach Science Publishers, New York, London, Paris (1964). Lectures delivered at Les Houches during 1963 session of the summer school of theoretical physics university of Grenoble. Reprinted in Ref. [17] pp. 563–584

  19. Petrov, A.N.: Nonlinear perturbations and conservation laws on curved backgrounds in GR and other metric theories. In: Christiansen, M.N., Rasmussen, T.K. (eds.) Classical and Quantum Gravity Research, chap. 2, pp. 79–160. Nova Science Publishers, New York (2008). E-print arXiv:0705.0019 [gr-qc]

  20. Rosenfeld, L.: On the energy-momentum tensor. In: Cohen, R.S., Stachel, J.J. (eds.) Selected Papers of Léon Rosenfeld, Boston Studies in the Philosophy of Science, volume XXI, pp. 711–735. D. Reidel Publishing Company, Dordrecht, Boston, London (1978). English translation of Ref. [21]

  21. Rosenfeld, L.: Sur le tenseur d’impulsion-énergie. Mém. l’Acad. Roy. Belgique 18(6), 1–30 (1940). In French. English translation, see Ref. [20]

  22. Szabados, L.B.: Canonical pseudotensors, Sparling’s form and Noether currents (1991). Preprint KFKI-1991-29/B. [45 pp]

  23. Szabados, L.B.: On canonical pseudotensors, Sparling’s form and Noether currents. Class. Quantum Gravity 9(11), 2521–2541 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Trautman, A.: On the Einstein–Cartan equations. I. Bull. l’Acad. Polon. Sci., Sér. Sci. Math., Astron., et Phys. 20(2), 185–190 (1972)

  25. Trautman, A.: The general theory of relativity. Sov. Phys. Uspekhi Fizicheskikh Nauk 89(1), 319–339 (1966)

    Article  Google Scholar 

  26. Trautman, A.: On the Einstein–Cartan equations. II. Bull. l’Acad. Polon. Sci., Sér. Sci. Math., Astron., et Phys. 20(06), 503–506 (1971)

    MathSciNet  Google Scholar 

  27. Trautman, A.: The Einstein–Cartan theory. In: Françoise, J.P., Naber, G.L. (eds.) Encyclopedia of Mathematical Physics, pp. 189–195. Elsevier, Oxford (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Lompay.

Appendices

Appendix A: The condition for a Lagrangian to be a scalar

Let a Lagrangian

$$\begin{aligned} \fancyscript{L}= \fancyscript{L}(\mathbf {g}, \mathbf {R};\; \mathbf {T}, {\varvec{\nabla }}\mathbf {T},{\varvec{\nabla }}{\varvec{\nabla }}\mathbf {T};\; \varvec{\varphi }, {\varvec{\nabla }}\varvec{\varphi }, {\varvec{\nabla }}{\varvec{\nabla }}\varvec{\varphi }) \end{aligned}$$
(81)

be a generally covariant scalar. To reduce the formulae let us unite temporarily the fields \(\mathbf {T}= \{ T^{\alpha }{}_{\beta \gamma }\}\) and \(\varvec{\varphi }= \{ \varphi ^{a}\}\) into the unique set \(\varvec{\phi }= \{ \phi ^{a}\}\):

$$\begin{aligned} \mathbf {T},\; \varvec{\varphi }\quad \rightarrow \quad \varvec{\phi }= \{ \mathbf {T}, \varvec{\varphi }\}. \end{aligned}$$

Then

$$\begin{aligned} \fancyscript{L}= \fancyscript{L}(\mathbf {g}, \mathbf {R};\; \varvec{\phi }, {\varvec{\nabla }}\varvec{\phi }, {\varvec{\nabla }}{\varvec{\nabla }}\varvec{\phi }). \end{aligned}$$

In accordance with the definition of the scalar its total variation \(\bar{\delta }\fancyscript{L}\) induced by an infinitesimal diffeomorphism

$$\begin{aligned} x^\mu \quad \rightarrow \quad x'^\mu = x^\mu + \delta x^{\mu }(x), \end{aligned}$$
(82)

is equal to zero:

$$\begin{aligned} \bar{\delta }\fancyscript{L}\mathop {=}\limits ^{def}\fancyscript{L}'(x') - \fancyscript{L}(x) = 0. \end{aligned}$$

Taking into account the connection between the total \(\bar{\delta }\) and the functional \(\delta \) variations

$$\begin{aligned} \bar{\delta }= \delta x^{\lambda }{\partial _{\lambda }}{}+ \delta , \end{aligned}$$
(83)

we find

$$\begin{aligned} \delta x^{\lambda }{\partial _{\lambda }}{}\fancyscript{L}+ \delta \fancyscript{L}= 0. \end{aligned}$$
(84)

Let us compute \(\delta \fancyscript{L}\). It is evidently

$$\begin{aligned}&\delta \fancyscript{L}= \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial g_{\alpha \beta }}\delta g_{\alpha \beta }+ \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}\delta R^{\alpha }{}_{\beta \gamma \delta }\right\} + \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \phi ^{a}}\delta \phi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\phi ^{a})}\delta \left( {\nabla _{\kappa }}{}\phi ^{a}\right) \right. \nonumber \\&\quad \qquad \;\, \left. + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a})}\delta \left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right) \right\} = \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial g_{\alpha \beta }}\left[ -\delta x^{\lambda }{\partial _{\lambda }}{}g_{\alpha \beta }+ \bar{\delta }g_{\alpha \beta }\right] + \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}\right. \nonumber \\&\quad \qquad \;\left. \times \left[ -\delta x^{\lambda }{\partial _{\lambda }}{}R^{\alpha }{}_{\beta \gamma \delta }+ \bar{\delta }R^{\alpha }{}_{\beta \gamma \delta }\right] \right\} + \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \phi ^{a}}\left[ -\delta x^{\lambda }{\partial _{\lambda }}{}\phi ^{a}+ \bar{\delta }\phi ^{a}\right] + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\phi ^{a})}\right. \nonumber \\&\quad \qquad \,\; \times \left[ -\delta x^{\lambda }{\partial _{\lambda }}{}\left( {\nabla _{\kappa }}{}\phi ^{a}\right) + \bar{\delta }\left( {\nabla _{\kappa }}{}\phi ^{a}\right) \right] \nonumber \\&\quad \qquad \;\,\left. + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a})}\left[ -\delta x^{\lambda }{\partial _{\lambda }}{}\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right) + \bar{\delta }\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right) \right] \right\} , \end{aligned}$$
(85)

where at the second step we used the connection between the total and the functional variations (83). In the last formula \({\partial _{}}{}^*\fancyscript{L}/{\partial _{}}{}g_{\beta \gamma }\) means explicit derivative with respect to \(g_{\beta \gamma }\), that is the differentiation is provided only with respect \(g_{\beta \gamma }\), which are not included in \(\mathbf {R}\) and \({\varvec{\nabla }}\); analogously, \({\partial _{}}{}^*\fancyscript{L}/{\partial _{}}{}\phi ^{a}\) means differentiation only with respect to \(\phi ^{a}\), which is not included in \({\varvec{\nabla }}\varvec{\phi }\) and \({\varvec{\nabla }}{\varvec{\nabla }}\varvec{\phi }\). Note now that

$$\begin{aligned}&\left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial g_{\alpha \beta }}{\partial _{\lambda }}{}g_{\alpha \beta }+ \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}{\partial _{\lambda }}{}R^{\alpha }{}_{\beta \gamma \delta }\right\} + \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \phi ^{a}}{\partial _{\lambda }}{}\phi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\phi ^{a})}{\partial _{\lambda }}{}\left( {\nabla _{\kappa }}{}\phi ^{a}\right) \right. \nonumber \\&\quad \left. + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a})}{\partial _{\lambda }}{}\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right) \right\} = {\partial _{\lambda }}{}\fancyscript{L}.\quad \end{aligned}$$
(86)

Next, take into account tensorial nature of the quantities \(\{ g_{\alpha \beta }\}\), \(\{ R^{\alpha }{}_{\beta \gamma \delta }\}\), \(\{ \phi ^{a}\}\), \(\{ {\nabla _{\kappa }}{}\phi ^{a}\}\), \(\{ {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\}\). Then, by definition, for the infinitesimal diffeomorphisms (82) we have:

$$\begin{aligned} \bar{\delta }g_{\alpha \beta }&= (\Delta ^{\sigma }{}_{\rho })\left. _{\alpha \beta }\right| ^{\eta \zeta }g_{\eta \zeta }\times {\partial _{\sigma }}{}\delta x^{\rho };\end{aligned}$$
(87)
$$\begin{aligned} \bar{\delta }R^{\alpha }{}_{\beta \gamma \delta }&= (\Delta ^{\sigma }{}_{\rho })\left. ^{\alpha }{}_{\beta \gamma \delta }\right| _{\eta }{}^{\zeta \varphi }{}^\xi R^{\eta }{}_{\zeta \varphi \xi }\times {\partial _{\sigma }}{}\delta x^{\rho };\end{aligned}$$
(88)
$$\begin{aligned} \bar{\delta }\phi ^{a}&= (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}\phi ^{b}\times {\partial _{\sigma }}{}\delta x^{\rho };\end{aligned}$$
(89)
$$\begin{aligned} \bar{\delta }\left( {\nabla _{\kappa }}{}\phi ^{a}\right)&= \left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}\phi ^{b}- \left( \delta ^{\sigma }_{\kappa }\delta ^{\pi }_{\rho }\right) {\nabla _{\pi }}{}\phi ^{a}\right] \times {\partial _{\sigma }}{}\delta x^{\rho };\end{aligned}$$
(90)
$$\begin{aligned} \bar{\delta }\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right)&= \left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{b}- \left( \delta ^{\sigma }_{\kappa }\delta ^{\pi }_{\rho }\right) {\nabla _{\pi }}{}{\nabla _{\varepsilon }}{}\phi ^{a}- \left( \delta ^{\sigma }_{\varepsilon }\delta ^{\pi }_{\rho }\right) {\nabla _{\kappa }}{}{\nabla _{\pi }}{}\phi ^{a}\right] {\partial _{\sigma }}{}\delta x^{\rho },\nonumber \\ \end{aligned}$$
(91)

where \(\{ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}\}\) are the Belinfante-Rosenfeld symbols (see, for example, Ref. [14]). Using in the right hand side of the formula (85) the formulae (86)–(91), we find

$$\begin{aligned}&\delta \fancyscript{L}= - \left( {\partial _{\lambda }}{}\fancyscript{L}\right) \times \delta x^{\lambda }\\&\quad + \left( \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial g_{\alpha \beta }}(\Delta ^{\sigma }{}_{\rho })\left. _{\alpha \beta }\right| ^{\eta \xi }g_{\eta \xi }+ \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}(\Delta ^{\sigma }{}_{\rho })\left. ^{\alpha }{}_{\beta \gamma \delta }\right| _{\eta }{}^{\zeta \varphi }{}^\xi R^{\eta }{}_{\zeta \varphi \xi }\right\} \right. \nonumber \\&\quad \left. + \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \phi ^{a}}(\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}\phi ^{b}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\phi ^{a})}\left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}\phi ^{b}- \delta ^{\sigma }_{\kappa }{\nabla _{\rho }}{}\phi ^{a}\right] \right. \right. \nonumber \\&\quad \left. \left. + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a})}\left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{b}- \delta ^{\sigma }_{\kappa }{\nabla _{\rho }}{}{\nabla _{\varepsilon }}{}\phi ^{a}- \delta ^{\sigma }_{\varepsilon }{\nabla _{\kappa }}{}{\nabla _{\rho }}{}\phi ^{a}\right] \right\} \right) \times {\partial _{\sigma }}{}\delta x^{\rho }. \end{aligned}$$

Substituting this expression into the formula (84) and taking into account the arbitrariness of the vector field \(\{ \delta x^{\mu }(x) \}\), we obtain

(92)

Appendix B: The calculation of \({\nabla _{\nu }}{}\fancyscript{L}\)

For the transformations presented in the main text of the paper one needs the explicit expression for the \({\nabla _{\nu }}{}\fancyscript{L}\). Let us calculate it. Because \(\fancyscript{L}\) is a generally covariant scalar of the type (81) one has

(93)

Using the expressions for the covariant derivatives \(\{ {\nabla _{\nu }}{}g_{\alpha \beta }\}\), \(\{ {\nabla _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }\}\), \(\{ {\nabla _{\nu }}{}\phi ^{a}\}\), \(\{ {\nabla _{\nu }}{}{\nabla _{\kappa }}{}\phi ^{a}\}\), \(\{ {\nabla _{\nu }}{}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\}\)

$$\begin{aligned} {\nabla _{\nu }}{}g_{\alpha \beta }&= {\partial _{\nu }}{}g_{\alpha \beta }+ \Gamma ^{\rho }{}_{\sigma \nu }(\Delta ^{\sigma }{}_{\rho })\left. _{\alpha \beta }\right| ^{\eta \zeta }g_{\eta \zeta };\end{aligned}$$
(94)
$$\begin{aligned} {\nabla _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }&= {\partial _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }+ \Gamma ^{\rho }{}_{\sigma \nu }(\Delta ^{\sigma }{}_{\rho })\left. ^{\alpha }{}_{\beta \gamma \delta }\right| _{\eta }{}^{\zeta \varphi }{}^\xi \; R^{\eta }{}_{\zeta \varphi \xi };\end{aligned}$$
(95)
$$\begin{aligned} {\nabla _{\nu }}{}\phi ^{a}&= {\partial _{\nu }}{}\phi ^{a}+ \Gamma ^{\rho }{}_{\sigma \nu }(\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}\phi ^{b};\end{aligned}$$
(96)
$$\begin{aligned} {\nabla _{\nu }}{}\left( {\nabla _{\kappa }}{}\phi ^{a}\right)&= {\partial _{\nu }}{}\left( {\nabla _{\kappa }}{}\phi ^{a}\right) + \Gamma ^{\rho }{}_{\sigma \nu }\left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}\phi ^{b}- \delta ^{\sigma }_{\kappa }{\nabla _{\rho }}{}\phi ^{a}\right] ;\end{aligned}$$
(97)
$$\begin{aligned} {\nabla _{\nu }}{}\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right)&= {\partial _{\nu }}{}\left( {\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{a}\right) \nonumber \\&+ \Gamma ^{\rho }{}_{\sigma \nu }\left[ (\Delta ^{\sigma }{}_{\rho })\left. ^{a}\right| _{b}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\phi ^{b}- \delta ^{\sigma }_{\kappa }{\nabla _{\rho }}{}{\nabla _{\varepsilon }}{}\phi ^{a}- \delta ^{\sigma }_{\varepsilon }{\nabla _{\kappa }}{}{\nabla _{\rho }}{}\phi ^{a}\right] ,\qquad \end{aligned}$$
(98)

we find the partial derivatives \(\{ {\partial _{\nu }}{}g_{\alpha \beta }\}\), \(\{ {\partial _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }\}\), \(\{ {\partial _{\nu }}{}\phi ^{a}\}\), \(\{ {\partial _{\nu }}{}({\nabla _{\kappa }}{}\phi ^{a}) \}\), \(\{ {\partial _{\nu }}{}({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{} \phi ^{a}) \}\) and substitute them into the formula (93). After a rearrangement of items we obtain

(99)

Taking into account in this relationship the identity (92) and metric-compatible condition \({\nabla _{\nu }}{}g_{\alpha \beta }= 0\), we find the search expression:

(100)

For the cases of interest this expression takes the following forms:

  1. 1.

    The case of minimal coupling, \(\fancyscript{L}= \fancyscript{L}(\mathbf {g};\; \varvec{\varphi }, {\varvec{\nabla }}\varvec{\varphi }, {\varvec{\nabla }}{\varvec{\nabla }}\varvec{\varphi })\),

    $$\begin{aligned} {\nabla _{\nu }}{}\fancyscript{L}= \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \varphi ^{a}}{\nabla _{\nu }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a}\right\} ;\nonumber \\ \end{aligned}$$
    (101)
  2. 2.

    The case of non-minimal \(\mathbf {g}\)-coupling, \(\fancyscript{L}= \fancyscript{L}(\mathbf {g}, \mathbf {R};\; \varvec{\varphi }, {\varvec{\nabla }}\varvec{\varphi }, {\varvec{\nabla }}{\varvec{\nabla }}\varvec{\varphi })\),

    $$\begin{aligned}&{\nabla _{\nu }}{}\fancyscript{L}= \left\{ \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}{\nabla _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }\right\} \nonumber \\&\quad + \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \varphi ^{a}}{\nabla _{\nu }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a}\right\} ;\qquad \end{aligned}$$
    (102)
  3. 3.

    The case of non-minimal \(\mathbf {g}\)- and \(\mathbf {T}\)-coupling, \(\fancyscript{L}= \fancyscript{L}(\mathbf {g}, \mathbf {R};\; \mathbf {T}, {\varvec{\nabla }}\mathbf {T},{\varvec{\nabla }}{\varvec{\nabla }}\mathbf {T};\; \varvec{\varphi }, {\varvec{\nabla }}\varvec{\varphi }, {\varvec{\nabla }}{\varvec{\nabla }}\varvec{\varphi })\),

    $$\begin{aligned} {\nabla _{\nu }}{}\fancyscript{L}&= \left\{ \displaystyle \frac{\partial \fancyscript{L}}{\partial R^{\alpha }{}_{\beta \gamma \delta }}{\nabla _{\nu }}{}R^{\alpha }{}_{\beta \gamma \delta }\right\} \nonumber \\&+ \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial \varphi ^{a}}{\nabla _{\nu }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}\varphi ^{a}+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a})}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}\varphi ^{a}\right\} \nonumber \\&+ \left\{ \displaystyle \frac{\partial ^*\fancyscript{L}}{\partial T^{\alpha }{}_{\beta \gamma }}{\nabla _{\nu }}{}T^{\alpha }{}_{\beta \gamma }+ \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{} T^{\alpha }{}_{\beta \gamma })}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}T^{\alpha }{}_{\beta \gamma }\right. \nonumber \\&\left. + \displaystyle \frac{\partial \fancyscript{L}}{\partial ({\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{} T^{\alpha }{}_{\beta \gamma })}{\nabla _{\nu }}{}{\nabla _{\kappa }}{}{\nabla _{\varepsilon }}{}T^{\alpha }{}_{\beta \gamma }\right\} . \end{aligned}$$
    (103)

Appendix C: The transformation of the expression \(\left( \frac{1}{2} G^{\alpha \beta \gamma \delta }{\nabla _{\nu }}{}R_{\alpha \beta \gamma \delta }\right) \)

Transform the expression \(\frac{1}{2} G^{\alpha \beta \gamma \delta }{\nabla _{\nu }}{}R_{\alpha \beta \gamma \delta }\) as follows. Substituting the Ricci identity in the form

$$\begin{aligned} {\nabla _{\nu }}{}R_{\alpha \beta \gamma \delta }\equiv - \left( {\nabla _{\gamma }}{}R_{\alpha \beta \delta \nu }+ {\nabla _{\delta }}{}R_{\alpha \beta \nu \gamma }+ R_{\alpha \beta \varepsilon \nu }T^{\varepsilon }{}_{\gamma \delta }+ R_{\alpha \beta \varepsilon \gamma }T^{\varepsilon }{}_{\delta \nu }+ R_{\alpha \beta \varepsilon \delta }T^{\varepsilon }{}_{\nu \gamma }\right) , \end{aligned}$$

one obtains

$$\begin{aligned} \frac{1}{2} G^{\alpha \beta \gamma \delta }{\nabla _{\nu }}{}R_{\alpha \beta \gamma \delta }&= -G^{\alpha \beta \gamma \delta }{\nabla _{\gamma }}{}R_{\alpha \beta \delta \nu }- \left( G^{\alpha \beta \gamma \delta }R_{\alpha \beta \varepsilon \gamma }\right) T^{\varepsilon }{}_{\delta \nu }\\&- \frac{1}{2} \left( G^{\alpha \beta \gamma \delta }T^{\varepsilon }{}_{\gamma \delta }\right) R_{\alpha \beta \varepsilon \nu }. \end{aligned}$$

Differentiating by parts the first item in the right hand side one finds

Appendix D: The transformation of the expression \(\left( \frac{-1}{2} b^{\gamma \beta }{}_{\alpha }{\nabla _{\nu }}{}T^{\alpha }{}_{\beta \gamma }\right) \)

Let \(\{ b^{\gamma \beta \alpha }\} \mathop {=}\limits ^{def}\{ \Delta ^{\overline{\gamma \beta \alpha }}_{\pi \rho \sigma }s^{\pi ,\, \rho \sigma }\}\), where \(\{ s^{\pi ,\, [\rho \sigma ]} = s^{\pi ,\, \rho \sigma }\}\), be an arbitrary tensor with such a symmetry. Then \(b^{[\gamma \beta ] \alpha }= b^{\gamma \beta \alpha }\). Based on this, transform the expression \(\left( \frac{-1}{2} b^{\gamma \beta }{}_{\alpha }{\nabla _{\nu }}{}T^{\alpha }{}_{\beta \gamma }\right) \) as follows.

  1. 1.

    Substituting the Ricci identity in the form

    $$\begin{aligned}&{\nabla _{\nu }}{}T^{\alpha }{}_{\beta \gamma }\equiv R^{\alpha }{}_{\nu \beta \gamma }+ R^{\alpha }{}_{\beta \gamma \nu }+ R^{\alpha }{}_{\gamma \nu \beta }\nonumber \\&\qquad - \left( {\nabla _{\beta }}{}T^{\alpha }{}_{\gamma \nu }+ {\nabla _{\gamma }}{}T^{\alpha }{}_{\nu \beta }+ T^{\alpha }{}_{\lambda \nu }T^{\lambda }{}_{\beta \gamma }+ T^{\alpha }{}_{\lambda \beta }T^{\lambda }{}_{\gamma \nu }+ T^{\alpha }{}_{\lambda \gamma }T^{\lambda }{}_{\nu \beta }\right) \nonumber \\&\quad = R^{\alpha }{}_{\nu \beta \gamma }+ 2R^{\alpha }{}_{[\beta \gamma ] \nu }- 2{\nabla _{[\beta }}{} T^{\alpha }{}_{\gamma ] \nu }- T^{\alpha }{}_{\lambda \nu }T^{\lambda }{}_{\beta \gamma }- 2T^{\alpha }{}_{\lambda [\beta } T^{\lambda }{}_{\gamma ] \nu }, \end{aligned}$$

    one obtains

    $$\begin{aligned}&-\displaystyle \frac{1}{2} b^{\gamma \beta }{}_{\alpha }{\nabla _{\nu }}{}T^{\alpha }{}_{\beta \gamma }\equiv -\displaystyle \frac{1}{2} b^{\gamma \beta }{}_{\alpha }R^{\alpha }{}_{\nu \beta \gamma }- b^{\gamma \beta }{}_{\alpha }R^{\alpha }{}_{\beta \gamma \nu }+ b^{\gamma \beta }{}_{\alpha }{\nabla _{\beta }}{}T^{\alpha }{}_{\gamma \nu }\nonumber \\&\quad + \displaystyle \frac{1}{2} b^{\gamma \beta }{}_{\alpha }T^{\alpha }{}_{\lambda \nu }T^{\lambda }{}_{\beta \gamma }+ b^{\gamma \beta }{}_{\alpha }T^{\alpha }{}_{\lambda \beta }T^{\lambda }{}_{\gamma \nu }. \end{aligned}$$
    (104)
  2. 2.

    Turn to the first term on the right hand side of (104). Then, recall the identity (C2) in the Appendix C.1 of the Ref. [15]:

    $$\begin{aligned} {\mathop {\nabla }\limits ^{*}_{\mu }}{}\left[ {\mathop {\nabla }\limits ^{*}_{\eta }}{}\theta _{\nu }{}^{\mu \eta }+ \displaystyle \frac{1}{2}\theta _{\nu }{}^{\rho \sigma }T^{\mu }{}_{\rho \sigma }\right] \equiv -\displaystyle \frac{1}{2} R^{\lambda }{}_{\nu \rho \sigma }\theta _{\lambda }{}^{\rho \sigma }, \end{aligned}$$

    change here \(\theta _{\nu }{}^{\mu \eta }= b^{\mu \eta }{}_{\nu }\) and obtain for this term:

    $$\begin{aligned}-\displaystyle \frac{1}{2} b^{\gamma \beta }{}_{\alpha }R^{\alpha }{}_{\nu \beta \gamma }= -{\mathop {\nabla }\limits ^{*}_{\mu }}{}\left[ {\mathop {\nabla }\limits ^{*}_{\eta }}{}b^{\mu \eta }{}_{\nu }+ \displaystyle \frac{1}{2} b^{\varepsilon \eta }{}_{\nu }T^{\mu }{}_{\varepsilon \eta }\right] . \end{aligned}$$
  3. 3.

    The second term on the right hand side of (104) is equal to

    $$\begin{aligned}&-b^{\gamma \beta }{}_{\alpha }R^{\alpha }{}_{\beta \gamma \nu }= -b^{\gamma \beta \alpha }R_{\alpha \beta \gamma \nu }= -\Delta ^{\overline{\gamma \beta \alpha }}_{\pi \rho \sigma }s^{\pi ,\, \rho \sigma }R_{\alpha \beta \gamma \nu }\nonumber \\&\quad \quad = -\displaystyle \frac{1}{2} \left( s^{\beta ,\, \gamma \alpha }+ s^{\alpha ,\, \gamma \beta }- s^{\gamma ,\, \beta \alpha }\right) R_{\alpha \beta \gamma \nu }\nonumber \\&\quad \quad = \left( s^{(\alpha ,\, \beta ) \gamma }- \frac{1}{2} s^{\gamma ,\, \alpha \beta }\right) R_{\alpha \beta \gamma \nu }= -\displaystyle \frac{1}{2} s^{\pi ,\, \rho \sigma }R_{\rho \sigma \pi \nu }; \end{aligned}$$
  4. 4.

    Using the differentiation by part in the third term on the right hand side of (104), one finds

    $$\begin{aligned}b^{\gamma \beta }{}_{\alpha }{\nabla _{\beta }}{}T^{\alpha }{}_{\gamma \nu }= -{\mathop {\nabla }\limits ^{*}_{\mu }}{}\left( b^{\mu \beta }{}_{\alpha }T^{\alpha }{}_{\beta \nu }\right) - \left( {\mathop {\nabla }\limits ^{*}_{\eta }}{}b^{\mu \eta }{}_{\lambda }\right) T^{\lambda }{}_{\mu \nu }; \end{aligned}$$
  5. 5.

    At last, one rewrites fourth and fifth terms on the right hand side of (104), respectively, as

    $$\begin{aligned}\frac{1}{2} b^{\gamma \beta }{}_{\alpha }T^{\alpha }{}_{\lambda \nu }T^{\lambda }{}_{\beta \gamma }= -\frac{1}{2} \left( b^{\varepsilon \eta }{}_{\lambda }T^{\mu }{}_{\varepsilon \eta }\right) T^{\lambda }{}_{\mu \nu }\end{aligned}$$

    and

    $$\begin{aligned}b^{\gamma \beta }{}_{\alpha }T^{\alpha }{}_{\lambda \beta }T^{\lambda }{}_{\gamma \nu }= - \left( b^{\mu \beta }{}_{\alpha }T^{\alpha }{}_{\beta \lambda }\right) T^{\lambda }{}_{\mu \nu }. \end{aligned}$$

Combining the results of the points 210 in the formula (104), one obtains the search identity:

(105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lompay, R.R. On the energy-momentum and spin tensors in the Riemann–Cartan space. Gen Relativ Gravit 46, 1692 (2014). https://doi.org/10.1007/s10714-014-1692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1692-4

Keywords

Navigation