Skip to main content
Log in

Generating anisotropic collapse and expansion solutions of Einstein’s equations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Analytic gravitational collapse and expansion solutions with anisotropic pressure are generated. Metric functions are found by requiring zero heat flow scalar. It emerges that a single function generates the anisotropic solutions. Each generating function contains an arbitrary function of time which can be chosen to fit various astrophysical time profiles. Two examples are provided: a bounded collapse metric and an expanding cosmological solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Misner, C.W., Sharp, D.H.: Spherical gravitational collapse with energy transport by radiative diffusion. Phys. Lett. 15, 279 (1965)

    Article  ADS  MATH  Google Scholar 

  2. Herrera, L., Ospino, J., Di Prisco, A.: All static spherically symmetric anisotropic solutions of Einstein’s equations. Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Herrera, L., Santos, N.O., Wang, A.: Shearing expansion-free spherical anisotropic fluid evolution. Phys. Rev. D 78, 084026 (2008)

    Article  ADS  Google Scholar 

  4. Bowers, R.L., Liang, E.P.T.: Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  5. Cosenza, M., Herrera, L., Esculpi, M., Witten, L.: Some models of anisotropic spheres in general relativity. J. Math. Phys. 22, 118 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bayin, S.S.: Anisotropic fluid spheres in general relativity. Phys. Rev. D 26, 1262 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bondi, H.: Anisotropic spheres in general relativity. Mon. Not. Roy. Astr. Soc. 259, 365 (1992)

    ADS  Google Scholar 

  8. Viaggiu, S.: Modeling usual and unsual anisotropic spheres. Int. J. Mod. Phys. D 18, 275 (2009)

    Article  ADS  MATH  Google Scholar 

  9. Dev, K., Gleiser, M.: Anisotropic stars: exact solutions. Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dev, K., Gleiser, M.: Anisotropic stars: exact solutions and stability. Int. J. Mod. Phys. D13, 1389 (2004)

    ADS  Google Scholar 

  11. Mak, M.K., Harko, T.: Anisotropic stars in general relativity. Proc. Roy. Soc. Lond. A 459, 393 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Sharma, R., Tikekar, R.: Non-adiabatic radiative collapse of a relativistic star under different initial conditions. Pramana J. Phys. 79, 501 (2012)

    Article  ADS  Google Scholar 

  13. Barceló, C., Liberati, S., Sonego, S., Visser, M.: Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008)

    Article  ADS  Google Scholar 

  14. Herrera, L., Santos, N.O.: Local anisotropy in self-gravitating systems. Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Glass, E.N.: Shear-free collapse with heat flow. Phys. Lett. 86A, 351 (1981)

    Article  ADS  Google Scholar 

  16. Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quantum Grav. 10, 1865 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Collins, C.B.: Global structure of the ’Kantowski-Sachs’ cosmological models. J. Math. Phys. 18, 2116 (1977)

    Article  ADS  Google Scholar 

  18. Kantowski, R., Sachs, R.K.: Some spatially homogeneous anisotropic relativistic cosmological models. J. Math. Phys. 7, 443 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  19. Geller, M.J., Diaferio, A., Kurtz, M.J.: The mass profile of the Coma galaxy cluster. Astrophys. J. 517, L23 (1999)

    Article  ADS  Google Scholar 

  20. Barrow, J.D., Maartens, R.: Anisotropic stresses in inhomogeneous universes. Phys. Rev. D 59, 043502 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Taub, A.H.: Stability of general relativistic gaseous masses and variational principles. Commun. Math. Phys. 15, 235 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  22. Herrera, L., Di Prisco, A., Ospino, J.: Conformally flat anisotropic spheres in general relativity. J. Math. Phys. 42, 2129 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Senovilla, J.M.M.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quantum Grav. 19, L113 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Professor Jean Krisch for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Glass.

Appendix: Energy-momentum and physical components

Appendix: Energy-momentum and physical components

Metric

$$\begin{aligned} g_{\mu \nu }^{\text {aniso}}dx^{\mu }dx^{\nu }=A^{2}dt^{2}-B^{2}dr^{2}-R^{2}d\Omega ^{2} \end{aligned}$$

is Petrov type D. The two principal null vectors, normal to (\(\vartheta ,\varphi \)) two-surfaces, are

$$\begin{aligned} l^{\mu }\partial _{\mu }&= A^{-1}\partial _{t}+B^{-1}\partial _{r}\end{aligned}$$
(46)
$$\begin{aligned} n^{\mu }\partial _{\mu }&= A^{-1}\partial _{t}-B^{-1}\partial _{r}. \end{aligned}$$
(47)

The energy-momentum tensor is given by (\(G=c=1\))

$$\begin{aligned} T^{\mu \nu }=w\hat{u}^{\mu }\hat{u}^{\nu }+p_{r}\hat{r}^{\mu }\hat{r}^{\nu }+p_{\perp }(\hat{\vartheta }^{\mu }\hat{\vartheta }^{\nu }+\hat{\varphi }^{\mu }\hat{\varphi }^{\nu })+q^{\mu }\hat{u}^{\nu }+\hat{u}^{\mu }q^{\nu } \end{aligned}$$
(48)

where \(p_{r}\) is the radial pressure, \(p_{\perp }\) is the tangential pressure, \(w\) is the mass-energy density, and \(q^{\mu }\) is the radial heat flow vector orthogonal to \(\hat{u}^{\mu }\). We use notation of Taub [21] for \(w\). Taub’s purpose was to distinguish mass-energy density from proper mass-density \(\rho \), with \(w=\rho (1+\epsilon )\). This allows the first law of thermodynamics to be written in its usual form \(Tds=d\epsilon +pd(1/\rho )\) with specific entropy \(s\) and specific internal energy \(\epsilon \). The kinematics of the fluid are described by

$$\begin{aligned} \hat{u}_{\mu ;\nu }&= a_{\mu }\hat{u}_{\nu }+\sigma _{\mu \nu }-(\Theta /3)(\hat{r}_{\mu }\hat{r}_{\nu }+\hat{\vartheta }_{\mu }\hat{\vartheta }_{\nu }+\hat{\varphi }_{\mu }\hat{\varphi }_{\nu }),\end{aligned}$$
(49a)
$$\begin{aligned} a_{\mu }dx^{\mu }&= -(A^{\prime }/A)dr,\end{aligned}$$
(49b)
$$\begin{aligned} \Theta&= A^{-1}(\dot{B}/B+2\dot{R}/R),\end{aligned}$$
(49c)
$$\begin{aligned} \sigma _{\mu \nu }&= \sigma [-2\hat{r}_{\mu }\hat{r}_{\nu }+\hat{\vartheta }_{\mu }\hat{\vartheta }_{\nu }+\hat{\varphi }_{\mu }\hat{\varphi }_{\nu }],\,\,\sigma =A^{-1}(\dot{R}/R-\dot{B}/B) \end{aligned}$$
(49d)

where primes denote \(\partial /\partial r\), and overdots denote \(\partial /\partial t\). The rate-of shear \(\sigma _{\mu \nu }\) is trace-free, and \(\sigma _{\mu \nu }\sigma ^{\mu \nu }=6\sigma ^{2}\). The heat flow vector (\(q^{\mu }\hat{u}_{\mu }=0\)) is given by

$$\begin{aligned} 4\pi q^{\mu }\partial _{\mu }&= Q\partial _{r}\end{aligned}$$
(50)
$$\begin{aligned} Q&= (AB)^{-1}\left[ \frac{A^{\prime }}{A}\frac{\dot{R}}{R}+\frac{\dot{B}}{B}\frac{R^{\prime }}{R}-\frac{\dot{R}^{\prime }}{R}\right] \end{aligned}$$
(51)

The sectional curvature mass is

$$\begin{aligned} 2m=R^{3}R_{\alpha \beta \mu \nu }\hat{\vartheta }^{\alpha }\hat{\varphi }^{\beta }\hat{\vartheta }^{\mu }\hat{\varphi }^{\nu }=R[1+\dot{R}^{2}/A^{2}-(R^{\prime })^{2}/B^{2}]. \end{aligned}$$
(52)

The mass-energy density and pressures are given, respectively, by

$$\begin{aligned} 8\pi w&= \frac{1}{A^{2}}\left[ \left( \frac{\dot{R}}{R}\right) ^{2}+2\frac{\dot{R}}{R}\frac{\dot{B}}{B}\right] -\frac{1}{B^{2}}\left[ 2\frac{R^{\prime \prime }}{R}+\left( \frac{R^{\prime }}{R}\right) ^{2}-2\frac{B^{\prime }}{B}\frac{R^{\prime }}{R}\right] +\frac{1}{R^{2}} \qquad \end{aligned}$$
(53)
$$\begin{aligned} 8\pi p_{r}&= \frac{1}{B^{2}}\left[ \left( \frac{R^{\prime }}{R}\right) ^{2}+2\frac{R^{\prime }}{R}\frac{A^{\prime }}{A}\right] -\frac{1}{A^{2}}\left[ 2\frac{\ddot{R}}{R}+\left( \frac{\dot{R}}{R}\right) ^{2}-2\frac{\dot{R}}{R}\frac{\dot{A}}{A}\right] -\frac{1}{R^{2}} \end{aligned}$$
(54)
$$\begin{aligned} 8\pi p_{\perp }&= -\frac{1}{A^{2}}\left[ \frac{\ddot{R}}{R}+\frac{\ddot{B}}{B}+\frac{\dot{R}}{R}\left( \frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right) +\frac{\dot{A}}{A}\frac{\dot{B}}{B}\right] +\frac{1}{B^{2}}\left[ \frac{R^{\prime \prime }}{R}+\frac{A^{\prime \prime }}{A}\right. \nonumber \\&\left. +\frac{R^{\prime }}{R}\left( \frac{A^{\prime }}{A}-\frac{B^{\prime }}{B}\right) -\frac{A^{\prime }}{A}\frac{B^{\prime }}{B}\right] \end{aligned}$$
(55)

1.1 Trapped surfaces

The topological two-spheres (\(\vartheta ,\varphi \)) nested in an \(R=const\) surface at time \(t\) have outgoing null geodesic normal \(l^{\mu }\) and incoming null geodesic normal \(n^{\mu }\). The two principal null vectors (46) and (47) provide trapping scalars

$$\begin{aligned} \kappa _{1}=l^{\mu }\partial _{\mu }(\ln R),\quad \kappa _{2}=n^{\mu } \partial _{\mu }(\ln R). \end{aligned}$$

When scalars [23] \(\kappa _{1}\) and \(\kappa _{2}\) have the same sign, a trapped surface [24] will exist:

$$\begin{aligned} \kappa _{1}&= A^{-1}(\dot{R}/R)+B^{-1}(R^{\prime }/R)\end{aligned}$$
(56)
$$\begin{aligned} \kappa _{2}&= A^{-1}(\dot{R}/R)-B^{-1}(R^{\prime }/R). \end{aligned}$$
(57)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, E.N. Generating anisotropic collapse and expansion solutions of Einstein’s equations. Gen Relativ Gravit 45, 2661–2670 (2013). https://doi.org/10.1007/s10714-013-1609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1609-7

Keywords

Navigation