Skip to main content
Log in

Numerical solutions to the cosmological 3-fluid problem

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show that, for the scalar field cosmology with exponential potential, the set of values of the coupling parameter for which the solutions undergo a transient period of acceleration (TPA) is much larger than the set discussed in the literature. The gradual inclusion of ordinary and dark matters results in an everywhere, but near the origin, smoother and right shifted (along the time axis) acceleration curve. For the 3-fluid problem, the energy density need not exhibit a plateau during the acceleration period. Much excess in the dark matter and/or ordinary matter energy densities would lead the universe to undergo an eternal deceleration expansion. For the 3-fluid problem with a single exponential potential we conclude that the Big Bang Nucleosynthesis constraint is not fulfilled if the universe is to undergo a TPA. The 3-fluid model remains a good approximation for the description of large scale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The second term in Eq. (20) of Ref. [20] should read \(-\varepsilon ka^3\dot{\phi }^2/2\).

  2. Because of different conventions, the values of (\(\lambda _R,V_{0R}\)) used in [8] are such that \(\lambda =\sqrt{6}\lambda _R\) and \(V_{0R}=6V_0\).

References

  1. Ratra, B., Peebles, P.J.E.: Phys. Rev D. 37, 3406 (1988)

    Article  ADS  Google Scholar 

  2. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998). arXiv:astro-ph/9805260

    Article  ADS  Google Scholar 

  3. Chimento, L.P.: Class. Quantum Grav. 15, 965 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Townsend, P., Wohlfarth, M.: Phys. Rev. Lett. 91, 061302 (2003). hep-th/0303097

    Article  MathSciNet  ADS  Google Scholar 

  5. Emparan, R., Garriga, J.: JHEP 05, 028 (2003). hep-th/0304124

    Article  MathSciNet  ADS  Google Scholar 

  6. Kehagias, A., Kofinas, G.: Class. Quantum Grav. 21, 3871 (2004). gr-qc/0402059

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Linder, E.V.: Phys. Rev. Lett. 70, 023511 (2004). arXiv:astro-ph/0402503

    MathSciNet  ADS  Google Scholar 

  8. Russo, J.G.: Phys. Lett. B 600, 185 (2004). arXiv:hep-th/0403010

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev D. 70, 043539 (2004). arXiv:hep-th/0405034

    Article  ADS  Google Scholar 

  10. Townsend, P.: In: Zambrini, J.C. (ed.), XIV-th International Congress on Mathematical Physics, World Scientific, Singapore, pp. 655–662 (2005). hep-th/0308149

  11. Brookfield, A.W., et al.: Phys. Rev. Lett. 96, 061301 (2006). arXiv:astro-ph/0503349

    Article  ADS  Google Scholar 

  12. Lima, J.A.S., Silva, F.E., Santos, R.C.: Class. Quantum Grav. 25, 205006 (2008). arXiv:0807.3379 [astro-ph]

    Article  ADS  Google Scholar 

  13. Basilakos, S., Plionis, M., Solà, S.: Phys. Rev. D 80, 3511 (2009). arXiv:0907.4555 [astro-ph.CO]

    Google Scholar 

  14. Andrianov, A.A., Cannata, F., Kamenshchik, A.Y.: JCAP 10, 004 (2004). arXiv:1105.4515 [gr-qc]

    ADS  Google Scholar 

  15. Steinhardt, P.J., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999). arXiv:astro-ph/9812313

    Article  ADS  Google Scholar 

  16. Ohta, N.: Phys. Rev. Lett. 91, 061303 (2003). arXiv:hep-th/0303238

    Article  MathSciNet  ADS  Google Scholar 

  17. Ohta, N.: Prog. Theor. Phys. 110, 269 (2003). arXiv:hep-th/0304172

    Article  ADS  MATH  Google Scholar 

  18. Carroll, S.M.: Phys. Rev. Lett. 81, 3067 (1998). arXiv:astro-ph/9806099

    Article  ADS  Google Scholar 

  19. Amendola, L.: Phys. Rev D. 62, 043511 (2000). arXiv:astro-ph/9908023

    Article  ADS  Google Scholar 

  20. Tsamparlis, M., Paliathanasis, A.: Class. Quantum Grav. 29, 015006 (2012). arXiv:1111.5567 [astro-ph.CO]

    Article  MathSciNet  ADS  Google Scholar 

  21. Bertolami, O., Carrilho, P., Páramos, J.: Phys. Rev. D 86, 103522 (2012). arXiv:1206.2589 [gr-qc]

    Article  ADS  Google Scholar 

  22. de Ritis, R., Marmo, G., Platania, G., Rubano, C., Scudellaro, P., Stornaiolo, C.: Phys. Rev. D 42, 1091 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  23. Piedipalumbo, E., Scudellaro, P., Esposito, G., Rubano, C.: Gen. Relativ. Gravit. 44, 2611 (2012). arXiv:1112.0502 [astro-ph.CO]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Andrianov, A.A., Cannata, F., Kamenshchik, A.Y.: Phys. Rev. D. 86, 107303 (2012). arXiv:1206.2828 [gr-qc]

    Article  ADS  Google Scholar 

  25. Azreg-Aïnou, M.: Class. Quantum Grav. 30, 205001 (2013). arXiv:1304.7470 [gr-qc]

    Google Scholar 

  26. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998). arXiv:gr-qc/9711068

    Article  ADS  Google Scholar 

  27. Bean, R., Hansen, S.H., Melchiorri, A.: Phys. Rev. D 64, 103508 (2001). arXiv:astro-ph/0104162

    Article  ADS  Google Scholar 

  28. Bean, R., Hansen, S.H., Melchiorri, A.: Nucl. Phys. Proc. Suppl. 110, 167 (2002). arXiv:astro-ph/0201127

    ADS  Google Scholar 

  29. Ferreira, P., Joyce, M.: Phys. Rev. D 58, 023503 (1998). arXiv:astro-ph/9711102

    Article  ADS  Google Scholar 

  30. Komatsu, E. et al.: (WMAP Collaboration), Astrophys. J. Suppl. 180, 330 (2009). arXiv:0803.0547 [astro-ph]

    Google Scholar 

  31. Dodelson, S.: Modern Cosmology. Academic Press, San Diego (2003)

    Google Scholar 

  32. Liddle, A.: An Introduction to Modern Cosmology, 2nd edn. Wiley, West Sussex (2003)

    Google Scholar 

  33. Bertolami, O., Pedro, F.G., Le Delliou, M.: Phys. Lett. B 654, 165 (2007). arXiv:astro-ph/0703462

    Article  ADS  Google Scholar 

  34. Guo, Z.-K., Ohta, N., Tsujikawa, S.: Phys. Rev. D 76, 023508 (2007). arXiv:astro-ph/0702015

    Article  ADS  Google Scholar 

  35. Amendola, L., Tocchini-Valentini, D.: Phys. Rev. D 66, 043528 (2002). arXiv:astro-ph/0111535

    Article  ADS  Google Scholar 

  36. Brookfield, A.W., van de Bruck, C., Hall, L.M.H.: Phys. Rev. D 77, 043006 (2008). arXiv:astro-ph/0709.2297

    Article  ADS  Google Scholar 

  37. Baldi, M.: Mon. Not. R. Astron. Soc. 428, 2074 (2013). arXiv:astro-ph.CO/1206.2348

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Azreg-Aïnou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azreg-Aïnou, M. Numerical solutions to the cosmological 3-fluid problem. Gen Relativ Gravit 45, 2635–2646 (2013). https://doi.org/10.1007/s10714-013-1607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1607-9

Keywords

Navigation