Skip to main content
Log in

Nonlinear multidimensional gravity and the Australian dipole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The existing observational data on possible variations of fundamental physical constants (FPC) confirm more or less confidently only a variability of the fine structure constant \(\alpha \) in space and time. A model construction method is described, where variations of \(\alpha \) and other FPCs (including the gravitational constant \(G\)) follow from the dynamics of extra space-time dimensions in the framework of curvature-nonlinear multidimensional theories of gravity. An advantage of this method is a unified approach to variations of different FPCs. A particular model explaining the observable variations of \(\alpha \) in space and time has been constructed. It comprises a FRW cosmology with accelerated expansion, perturbed due to slightly inhomogeneous initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Our sign conventions are: the metric signature \((+{}-{}-{}-)\); the curvature tensor \(R^{\sigma }{}_{\mu \rho \nu } = \partial _\nu \Gamma ^{\sigma }_{\mu \rho }-\ldots ,\ R_{\mu \nu }= R^{\sigma }{}_{\mu \sigma \nu }\), so that the Ricci scalar \(R > 0\) for de Sitter space-time and the matter-dominated cosmological epoch. We use the natural units with the speed of light \(c\) and Planck’s constant \(\hbar \) equal to unity.

  2. We assume for certainty \(\phi > 0\), or, which is the same according to (12), \(K = +1\), but everything can be easily reformulated for \(\phi < 0\). A possible term linear in \(R\) in \(F(R)\) is dropped because its inclusion would make the calculations more bulky without adding any physically significant features.

References

  1. Drinkwater, M.J., Webb, J.K., Barrow, J.D., Flambaum, V.V.: Mon. Not. R. Astron. Soc. 295, 457 (1998)

    Article  ADS  Google Scholar 

  2. Webb, J.K., et al.: Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001)

    Article  ADS  Google Scholar 

  3. Webb, J.K., et al.: Evidence for spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011). ArXiv:1008.3907

    Google Scholar 

  4. King, J.A., et al.: Spatial variation in the fine-structure constant—new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422, 3370–3414 (2012). ArXiv:1202.4758

  5. Berengut, J.C., Flambaum, V.V.: Astronomical and laboratory searches for space-time variation of fundamental constants. J. Phys. Conf. Ser. 264, 012010 (2011). Arxiv:1009.3693

    Google Scholar 

  6. Rosenband, T., et al.: Observation of the 1S0>3P0 lock ransition in \(^{27}{\rm Al}^{+}.\) Phys. Rev. Lett. 98, 220801 (2007)

  7. Shlyakhter, A.I.: Direct test of the constancy of fundamental nuclear constants. Nature 260, 340 (1976)

    Article  ADS  Google Scholar 

  8. Petrov, Y.V., et al.: Natural nuclear reactor Oklo and variation of fundamental constants. Part 1: computation of neutronics of fresh core. Phys. Rev. C 74, 064610 (2006). ArXiv:hep-ph/0506186

    Google Scholar 

  9. Gould, C.R., et al.: Time-variability of alpha from realistic models of Oklo reactors. Phys. Rev. C 74, 024607 (2006). ArXiv:nucl-ex/0701019

    Google Scholar 

  10. Barrow, J.D., Shaw, D.J.: Varying alpha: new onstraints from easonal ariations. Phys. Rev. D 78, 067304 (2008). ArXiv: 0806.4317

    Google Scholar 

  11. Berengut, J.C., et al.: Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. Phys. Rev. Lett. 111, 010801 (2013). ArXiv:1305.1337

    Google Scholar 

  12. Chiba, T.: The constancy of the constants of nature: updates. Prog. Theor. Phys. 126, 993–1019 (2011). ArXiv:1111.0092

    Google Scholar 

  13. Dicke, R.H., Peebles, P.J.E.: Phys. Rev. 128, 2006 (1962)

    Article  ADS  Google Scholar 

  14. Staniukovich, K.P.: The Gravitational Field and Elementary Particles. Nauka, Moscow (1965). (in Russian)

    Google Scholar 

  15. Bekenstein, J.D.: Phys. Rev. D 25, 1527 (1982)

    Google Scholar 

  16. Sandvik, H.B., Barrow, J.D., Magueijo, J.: Phys. Rev. Lett. 88, 031302 (2002). astro-ph/0107512

    Google Scholar 

  17. Mota, D.F., Barrow, J.D.: Varying alpha in a more realistic universe. Phys. Lett. B 581, 141 (2004). astro-ph/0306047

    Google Scholar 

  18. Mota, D.F., Barrow, J.D.: Local and global variations of the fine structure constant. Mon. Not. Roy. Astron. Soc. 349, 291 (2004). astro-ph/0309273

    Google Scholar 

  19. Chiba, T., Yamaguchi, M.: Runaway domain wall and space-time varying \(\alpha \). JCAP 1103, 044 (2011). ArXiv:1102.0105

    Google Scholar 

  20. Olive, K.A., Peloso, M., Uzan, J.-P.: The wall of fundamental constants. Phys. Rev. D 83, 043509 (2011). ArXiv:1011.1504

    Google Scholar 

  21. Bamba, K., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 85, 044012 (2012). ArXiv:1107.2538

  22. Olive, K.A., Peloso, M., Peterson, A.J.: Where are the walls? Phys. Rev. D 86, 043501 (2012). ArXiv:1204.4391

    Google Scholar 

  23. Barrow, J.D., Lip, S.Z.W.: A generalized theory of varying alpha. Phys. Rev. D 85, 023514 (2012). ArXiv:1110.3120

    Google Scholar 

  24. Mariano, A., Perivolaropoulos, L.: Is there correlation between fine structure and dark energy cosmic dipoles? Phys. Rev. D 86, 08351 (2012). ArXiv:1206.4055

    Google Scholar 

  25. Mariano, A., Perivolaropoulos, L.: CMB maximum temperature asymmetry axis: alignment with other cosmic asymmetries. Phys. Rev. D 87, 043511 (2013). ArXiv: 1211.5915

    Google Scholar 

  26. Langacker, P., Segre, G., Strassler, M.J.: implications of gauge unification for time variation of the fine structure constant. Phys. Lett. B 528, 121–128 (2002). ArXiv:hep-ph/0112233

    Google Scholar 

  27. Calmet, X., Fritzsch, H.: The cosmological evolution of the nucleon mass and the electroweak coupling constants. Eur. Phys. J. C 24, 639–642 (2002). ArXiv:hep-ph/0112110

    Google Scholar 

  28. Uzan, J.-P.: Varying constants, gravitation and cosmology. Living Rev Relativ. 14, 2 (2011). ArXiv:1009.5514

    Google Scholar 

  29. Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Phys. Rev. D 21, 2167 (1980)

    Google Scholar 

  30. Freund, P.G.O.: Kaluza–Klein cosmologies. Nucl. Phys. B 209, 146 (1982)

    Google Scholar 

  31. Marciano, W.J.: Time variation of the fundamental constants and Kaluza–Klein theories. Phys. Rev. Lett. 52, 489 (1984)

    Article  ADS  Google Scholar 

  32. Kolb, E.W., Perry, M.J., Walker, T.P.: Time variation of fundamental constants, primordial nucleosynthesis, and the size of extra dimensions. Phys. Rev. D 33, 869 (1986)

    Google Scholar 

  33. Barrow, J.D.: Observational limits on the time evolution of extra spatial dimensions. Phys. Rev. D 35, 1805 (1987)

    Google Scholar 

  34. Kanno, S., Soda, J., Watanabe, M.: Anisotropic power-law inflation. JCAP 1012, 024 (2010). arXiv:1010.5307

  35. Bronnikov, K.A., Rubin, S.G.: Self-stabilization of extra dimensions. Phys. Rev. D 73, 124019 (2006)

    Google Scholar 

  36. Bronnikov, K.A., Rubin, S.G., Svadkovsky, I.V.: Multidimensional world, inflation and modern acceleration. Phys. Rev. D 81, 084010 (2010)

    Google Scholar 

  37. Bolokhov, S.V., Bronnikov, K.A., Rubin, S.G.: Extra dimensions as a source of the electroweak model. Phys. Rev. D 84, 044015 (2011)

    Google Scholar 

  38. Rubin, S.G., Zinger, A.S.: The Universe formation by a space reduction cascade with random initial parameters. Gen. Relativ. Gravit. 44, 2283 (2012). ArXiv:1101.1274

    Google Scholar 

  39. Bronnikov, K.A., Rubin, S.G.: Black Holes, Cosmology and Extra Dimensions. World Scientific, Singapore (2012)

    Book  Google Scholar 

  40. Kirillov, A.A., Korotkevich, A.A., Rubin, S.G.: Emergence of symmetries. Phys. Lett. B 718, 237–240 (2012). ArXiv:1205.1108

    Google Scholar 

  41. Jarosik, N., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Free issue. Astrophys. J. Suppl. 192, 14 (2011)

    Article  ADS  Google Scholar 

  42. Bronnikov, K.A., Melnikov, V.N.: On observational predictions from multidimensional gravity. Gen. Relativ. Gravit. 33, 1549 (2001). gr-qc/0103079

    Google Scholar 

  43. Bronnikov, K.A., Melnikov, V.N.: Conformal frames and D-dimensional gravity, gr-qc/0310112. In: Gillies, G.T., Melnikov, V.N., de Sabbata, V. (ed.) Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments, pp. 39–64, 30 April-10 May 2003, Erice. Kluwer, Dordrecht/Boston/London (2004)

  44. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters. ArXiv:1303.5076

  45. Said, N., Baccigalupi, C., Martinelli, M., Melchiorri, A., Silvestri, A.: New constraints on the dark energy equation of state. Phys. Rev. D 88, 043515 (2013). ArXiv:1303.4353

    Google Scholar 

  46. Farooq, O., Ratra, B.: Constraints on dark energy from the Ly\(\alpha \) forest baryon acoustic oscillations measurement of the redshift 2.3 Hubble parameter. ArXiv:1212.4264

  47. Farooq, O., Mania, D., Ratra, B.: Hubble parameter measurement constraints on dark energy. ArXiv:1211.4253

  48. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). hep-ph/9807344

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank A. Panov for his interest in our work. The work of S. R. and I. S. was supported in part by the Ministry of Education and Science of the Russian Federation, project 14.A18.21.0789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, K.A., Melnikov, V.N., Rubin, S.G. et al. Nonlinear multidimensional gravity and the Australian dipole. Gen Relativ Gravit 45, 2509–2528 (2013). https://doi.org/10.1007/s10714-013-1601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1601-2

Keywords

Navigation