Skip to main content
Log in

Rigid motions and generalized Newtonian gravitation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In an effort to contribute to a better understanding of General Relativity, here we lay the foundations of generalized Newtonian gravity, which unifies inertial forces and gravitational fields. We also formulate a kind of equivalence principle for this generalized Newtonian theory. Finally, we prove that the theory we propose here can be obtained as the non-relativistic limit of General Relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Although the velocity field (10) can be found elsewhere in the literature, to our knowledge nobody has used it as a vector potential.

References

  1. Bel, Ll.: Recent developments in gravitation Ed. Verdaguer, E., Garriga J., Céspedes J. World Scientific (1990)

  2. Born, M.: Phys. Z. 10, 814 (1909)

    Google Scholar 

  3. Cartan, E.: Ann. Ecole Norm. 40, 325 (1923)

    MathSciNet  Google Scholar 

  4. Cartan, E.: Ann. Ecole Norm. 41, 1 (1924)

    MathSciNet  ADS  Google Scholar 

  5. Ehlers, J. Grundlagenprobleme der modernen Physik Ed. Nitsch, J., Stachow, E.W., Wissenschaftverlag. B. I. 65 (1981)

  6. Einstein, A.: “Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen”, Jahrbuch der Radioaktivität und Elektronik 4 (1907) 411–462; reprinted in The Collected Papers of Albert Einstein, vol. 2: The Swiss Years: Writings 1900–1909, John Stachel et al. eds. (Princeton University Press 1989)

  7. Goldstein, M.: Classical Mechanics, 2nd edn. Addison-Wesley Pub. Co., Reading (1980)

    MATH  Google Scholar 

  8. Gullstrand, A.: Ark. Mat. Astron. Fys. 16(8), 1–15 (1922)

  9. Havas, P.: Rev. Mod. Phys. 36, 938 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Herglotz, G.: Ann. Phys. Lpz. 31, 393 (1910)

    Google Scholar 

  11. Jackson, J.D.: Classical Electrodynamics, p. 825. Wiley, Berlin (1975)

    MATH  Google Scholar 

  12. Kretschmann, E.: Ann. der Phys. 53, 575 (1917)

    MATH  Google Scholar 

  13. Kunzle, H.P.: Ann. Ins. Henri Poincaré XVII 4, 337 (1972)

    MathSciNet  Google Scholar 

  14. Llosa, J., Molina, A.: Relativitat especial amb aplicacions a l’electrodinàmica clàssica, Edicions U.B. 81 p. 206 (2005)

  15. Llosa, J., Molina, A., Soler, D.: Gen. Relativ. Gravit. 44, 1657 (2012). doi:10.1007/s10714-012-1363-2

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Noether, F.: Ann. Phys. Lpz. 31, 919 (1910)

    Google Scholar 

  17. Painlévé, P.C.R.: Acad. Sci. (Paris) 173, 677–680 (1921)

  18. Stachel, J.: The Genesis of General Relativity. Volume 1. The First to acts. pp. 81–111. Ed. Renn, J. (2007)

  19. Stachel, J.: Einstein from B to Z. Chapter V. Birkhäuser, Basel (2002)

    Google Scholar 

  20. Trautman, A.C.R.: Acad. Sci. 257, 617 (1963)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thanks our three good friends: Jesús Martín from who we have copied the Annex; Josep Llosa for carefully reading a previous draft of the paper and providing useful criticism that led to improvements; and finally Lluís Bel, without whose inspiration and insistence, almost none of this article would have occurred to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Molina.

Appendix

Appendix

Here, we give a detailed derivation of the transformation of position, velocity and acceleration connecting two Newtonian reference frames. By Chasles’s theorem [7], the most general relative motion connecting any pair of Newtonian reference frames, \(\mathcal{K }\) and \(\mathcal{K }^\prime \), is the combination of an arbitrary translational motion and an arbitrary rotational motion.

Let \(O\) be the origin of \(\mathcal{K }\), whose axes are aligned according to the orthonormal base \(\{\vec \varepsilon _i \}_{ i=1\ldots 3}\), and let \(Q\) be the origin of \(\mathcal{K }^\prime \), whose axes are aligned with the orthonormal base \(\{\vec {e}_i(t) \}_{ i=1\ldots 3}\). Assume that \(\vec {OQ}= X^i(t) \vec \varepsilon _i\).

As both bases are orthonormal, \(\vec \varepsilon _i\,\vec \varepsilon _j = \vec {e}_i(t)\,\vec {e}_j(t) = \delta _{ij}, \quad \forall t\), whence it follows that:

$$\begin{aligned} \vec {e}_j(t) = R^i_j(t)\,\vec \varepsilon _i \end{aligned}$$

where \(R^i_j(t)\) is an orthogonal matrix.

A point \(P\) can be referred to both frames, as \(\vec {x}\) in \(\mathcal{K }\) and as \(\vec {y}\) in \(\mathcal{K }^\prime \), and we have that \(\vec {x} = \vec {X} + \vec {y}\) which, writing the coordinates explicitly, reads:

$$\begin{aligned} x^i\vec \varepsilon _i =X^i\vec \varepsilon _i +y^j\vec {e}_j \end{aligned}$$

or

$$\begin{aligned} x^i = X^i(t) + R^i_j(t)\,y^j \end{aligned}$$
(41)

The transformation law for the velocity is:

$$\begin{aligned} \vec {v} := \frac{dx^i}{dt}\vec {\varepsilon }_i = \frac{dX^i}{dt}\vec \varepsilon _i + \frac{dy^j}{dt}\,\vec {e}_j + y^j\frac{d\vec {e}_j}{dt} = \vec {V} + \vec {w} + y^j\frac{d\vec {e}_j}{dt} \end{aligned}$$

where

$$\begin{aligned} \vec {w} := \frac{dy^j}{dt}\,\vec {e}_j \,, \qquad \vec {V} := \frac{dX^j}{dt}\,\vec \varepsilon _j \end{aligned}$$

and using that:

$$\begin{aligned} \frac{d\vec {e}_j}{dt} =\dot{R}^k_j\,\vec \varepsilon _k = \vec \Omega \times \vec {e}_j \end{aligned}$$

with

$$\begin{aligned} \vec {\Omega } := \frac{1}{2}\sum _j R_j^k\,\dot{R}_j^l\, \vec {\varepsilon }_k\times \vec {\varepsilon }_l = \Omega ^h \vec {\varepsilon }_h, \end{aligned}$$

that is:

$$\begin{aligned} \Omega _h \equiv \frac{1}{2} \sum _jR_j^k\,\dot{R}_j^l\eta _{klh}\,, \quad \Omega ^{kl} =\sum _j R_j^k\,\dot{R}_j^l\,, \end{aligned}$$

we arrive at:

$$\begin{aligned} \vec {v} = \vec {w} + \vec {V} + \vec \Omega \times \vec {y} \end{aligned}$$
(42)

or, alternatively,

$$\begin{aligned} \dot{x}^k = \dot{X}^k + R^k_l \dot{y}^l + \dot{R}^k_l y^l \quad \end{aligned}$$

Notice that:

$$\begin{aligned} \vec \Omega \times \vec {y} = \frac{1}{2} \sum _j R_j^k\,\dot{R}_j^l\, (\vec \varepsilon _k\times \vec \varepsilon _l)\times (y^i R_i^h \vec \varepsilon _h) = \dot{R}_j^k y^j \vec \varepsilon _k \end{aligned}$$

If we now take the derivative of (42), we obtain that the acceleration is:

$$\begin{aligned} \vec {a}&:= \frac{d^2x^i}{dt^2}\vec \varepsilon _i = \frac{d^2y^i}{dt^2}\vec {e}_i + \frac{dy^i}{dt}\frac{d\vec {e}_i}{dt} + \frac{d^2X^i}{dt^2}\vec \varepsilon _i \\&+\frac{d\vec \Omega }{dt}\times \vec {y} +\vec \Omega \times \left( \frac{dy^i}{dt}\vec {e}_i + y^i\frac{d\vec {e}_i}{dt}\right) \end{aligned}$$

and the transformation law for acceleration reads:

$$\begin{aligned} \vec {a} = \vec {b} + \vec {A} + \,\frac{d\vec \Omega }{dt}\times \vec {y} + \vec \Omega \times (\vec \Omega \times \vec {y}) + 2\vec \Omega \times \vec {w} \end{aligned}$$
(43)

or

$$\begin{aligned} {\ddot{x}}^k = R^k_l {{\ddot{y}}^l} + {{\ddot{X}}^k} +{{\ddot{R}}^k_l} y^l+ 2{\dot{R}}^k_l{\dot{y}}^l \end{aligned}$$

where

$$\begin{aligned} \vec {b} := \frac{d^2y^j}{dt^2}\,\vec {e}_j \,, \qquad \vec {A} {:=} \frac{d^2X^j}{dt^2}\,\vec \varepsilon _j \end{aligned}$$

Let us remark that:

$$\begin{aligned} \frac{d\vec \Omega }{dt}\times \vec {y}+\vec \Omega \times (\vec \Omega \times \vec {y}) = {{\ddot{R}}^k_l} y^l\vec {\varepsilon }_k \quad \mathrm{and} \quad \vec \Omega \times \vec {w} = \dot{R}_j^k \dot{y}^j \vec {\varepsilon }_k \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaén, X., Molina, A. Rigid motions and generalized Newtonian gravitation. Gen Relativ Gravit 45, 1531–1546 (2013). https://doi.org/10.1007/s10714-013-1542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1542-9

Keywords

Navigation