General Relativity and Gravitation

, Volume 44, Issue 6, pp 1581–1586 | Cite as

Editorial note to: J. Ehlers, F. A. E. Pirani and A. Schild, The geometry of free fall and light propagation

Open Access
Golden Oldie Editorial


Lorentzian geometry Conformal structures Projective structures Free fall Light propagation Golden Oldie 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Weyl H.: Reine Infinitesimalgeometrie. Math. Z. 2, 384–411 (1918)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Weyl, H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffasung. Nachr. Gesellschaft Wiss. Göttingen, Math.-Phys. Kl. pp. 99–112 (1921)Google Scholar
  3. 3.
    Ehlers J., Pirani F.A.E., Schild A.: The geometry of free fall and light propagation. In: O’Raifeartaigh, L. (eds) General Relativity: Papers in Honour of J. L. Synge, pp. 63–84. Clarendon Press, Oxford (1972)Google Scholar
  4. 4.
    Levi-Civita T.: Nozione di parallelismo in una varietà qualunque e consequente specificazione geometrica della curvatura Riemanniana. Rend. Circ. Mat. Palermo 42, 173–205 (1917)CrossRefGoogle Scholar
  5. 5.
    Hessenberg, G.: Vektorielle Begründung der Differentialgeometrie. Math. Ann. 78, 187–217 (1917) (Dated by the author: Breslau, June 1916)Google Scholar
  6. 6.
    Cartan É.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. Paris 174, 593–595 (1922)Google Scholar
  7. 7.
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Éc. Norm. 40, 325–412 (1923). English transl. by A Magnon and A Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986)Google Scholar
  8. 8.
    Schouten J.A.: Ricci-Calculus. Springer, Berlin (1954)MATHGoogle Scholar
  9. 9.
    Nurowski P., Trautman A.: Robinson manifolds as the Lorentzian analogs of Hermite manifolds. Diff. Geom. Appl. 17, 175–195 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    O’Raifeartaigh L.: The Dawning of Gauge Theory. Princeton University Press, Princeton (1997)MATHGoogle Scholar
  11. 11.
    Scholz, E.: Weyl geometry in late 20th century physics. Paper presented at the conference Beyond Einstein, Mainz University, September 2008.
  12. 12.
    Thomas J.M.: Asymmetric displacement of a vector. Trans. Amer. Math. Soc. 28, 658–670 (1926)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Trautman A.: On the structure of the Einstein-Cartan equations. Symp. Math. 12, 139–162 (1973)MathSciNetGoogle Scholar
  14. 14.
    Schouten J.A.: Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Maßbestimmung auf eine Mannigfaltigkeit mit euklidischer Maßbestimmung. Math. Zeitschr. 11, 58–88 (1921)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Synge J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1960)MATHGoogle Scholar
  16. 16.
    Synge, J.L.: Relativity based on chronometry. In: Recent developments in general relativity, volume dedicated to L. Infeld, pp. 441–448. Pergamon Press and PWN, Oxford and Warszawa (1962)Google Scholar
  17. 17.
    Cartan É.: Les espaces à connexion conforme. Ann. Soc. Polon. Math. 2, 171–221 (1923)Google Scholar
  18. 18.
    Cartan É.: Sur les variétés à connexion projective. Bull. Soc. Math. 52, 205–241 (1924)MathSciNetMATHGoogle Scholar
  19. 19.
    Kobayashi S.: Transformation Groups in Differential Geometry. Springer, Berlin (1972)MATHGoogle Scholar
  20. 20.
    Ambrose W., Singer I.M.: A theorem on holonomy. Trans. Amer. Math. Soc. 75, 428–443 (1953)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lichnerowicz, A.: Théorie Globale des Connexions et des Groupes d’Holonomie. Ed. Cremonese, Rome (1955)Google Scholar
  22. 22.
    Cartan, É.: Sur les espaces conformes généralisés et l’Univers optique. C. R. Acad. Sci. Paris, 174, 857–859 (1922). English transl. by A Magnon and A Ashtekar, in: É. Cartan, On manifolds with an affine connection and the theory of general relativity, Napoli: Bibliopolis (1986)Google Scholar
  23. 23.
    Robinson I., Robinson J.R.: Equations of motion in the linear approximation. In: O’Raifeartaigh, L. (eds) General Relativity: Papers in Honour of J. L. Synge, pp. 141–166. Clarendon Press, Oxford (1972)Google Scholar
  24. 24.
    Ehlers J., Schild A.: Geometry in a manifold with projective structure. Commun. Math. Phys. 32, 119–146 (1973)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Castagnino M.A.: The Riemannian structure of space-time as a consequence of a measurement method. J. Math. Phys. 12, 2203–2211 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Audretsch J., Gähler F., Straumann N.: Wave fields in Weyl spaces and conditions for the existence of a preferred pseudo-riemannian structure. Commun. Math. Phys. 95, 41–51 (1984)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Audretsch J., Lämmerzahl C.: A new constructive axiomatic scheme for the geometry of spacetime. In: Majer, U., Schmidt, H.-J. (eds) Semantical Aspects of Spacetime Theories, pp. 21–39. BI Wissenschaftsverlag, Mannheim (1994)Google Scholar
  28. 28.
    Schelb U.: Distinguishability of Weyl- from Lorentz- spacetimes by classical physical means. Gen. Relativ. Gravit. 28, 1321–1334 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Stachel J.: Conformal and projective structures in general relativity. Gen. Relativ. Gravit. 43, 3399–3409 (2011)ADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Instytut Fizyki TeoretycznejUniwersytet WarszawskiWarszawaPoland

Personalised recommendations