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The article by Jürgen Ehlers, Felix Pirani, and Alfred Schild (EPS), reprinted here
as a Golden Oldie, is devoted to the problem of deriving the Lorentzian geometry
that underlies the space-time of general relativity from compatible conformal and
projective structures on a four dimensional manifold. The geometry is based on a
set of axioms; the proofs, even if not complete, are presented in a form appealing to
physicists; they are well illustrated by carefully drawn figures. This article has been
influenced—perhaps even inspired—by the early papers by Hermann Weyl on the
foundations of differential geometry and their relation to physics. I use the opportu-
nity of writing this note to briefly recall Weyl’s articles [1,2] so as to emphasize the
novelty of the approach and of the results presented in [3] reprinted here.

In Bernhard Riemann’s approach to geometry (1854), everything was founded on
the metric tensor g. The Christoffel symbols1

�(g)μνρ
def= 1

2 gμσ (gσν,ρ + gσρ,ν − gνρ,σ )

1 In this note, Greek letters are used to denote space-time indices: μ, ν, ρ = 1, 2, 3, 4; EPS use Latin
indices. A comma followed by an index denotes differentiation with respect to the corresponding
coordinate.

The republication of the original paper can be found in this issue following the editorial note and online
via doi:10.1007/s10714-012-1353-4.
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were auxiliary quantities convenient to write the geodetic equation, obtained by
minimizing the length integral. Tullio Levi-Civita’s [4] parallel transport of vectors
was determined by the metric induced on a manifold by its embedding in a flat space.

Gerhard Hessenberg [5] was the first to introduce what is now called a linear con-
nection compatible with the metric, but not necessarily symmetric. His asymmetric
connection implicitly contained torsion. He also distinguished the shortest lines (extre-
mals of

∫
ds) from the straight lines (autoparallels) and pointed out that these notions

coincide for connections that are symmetric and metric. Élie Cartan properly defined
torsion of a linear connection and suggested its possible physical role [6,7].

The first section of Weyl’s article [1] is entitled On the relation between geometry
and physics. Weyl distinguished three levels of building the geometry: the continuum—
a bare manifold with smooth structure only—corresponds to an empty world, an affine
(linear) connection describes gravitation and a metric structure underlies the ‘æther’,
he said. Weyl imposed on the connection a condition of ‘commutativity’, equivalent to
its symmetry. The metric structure, as defined in this paper by Weyl, was a conformal
geometry, given by an equivalence class C of metrics g on a manifold M and a con-
nection compatible with C . In contemporary notation, such a Weyl geometry [8] is a
pair (C ,∇), where ∇ denotes the covariant derivative corresponding to a connection
�, i.e. ∇νXμ

def= Xμ,ν + �
μ
νρXρ for a vector field X . It is worth noting that Weyl

uses the expression null lines rather than isotropic, a misnomer introduced by pure
mathematicians; there are remarks on its origin in [9].

The equivalence relation, defining the class C , is

g
C≡ g′ ⇔ there is a function f on M such that g′ = (exp f )g. (A)

Compatibility between C and ∇ means that, for every g ∈ C , there is a one-form
A = Aμdxμ such that

∇μgνρ = Aμ gνρ. (B)

A consequence of (A) and (B) is ∇μg′
νρ = A′

μ g′
νρ , where A′

μ = Aμ+ f,μ.Weyl iden-
tified the 2-form F = dA with the electromagnetic field. With the advent of quantum
theory, the transformations involving f were suitably reinterpreted and gave rise to
the dawning of gauge theory [10]. Recent work on Weyl geometry and its applications
in relativistic physics has been reviewed in [11].

In [2] Weyl considers, in addition to C , a projective structure defined as an equiv-
alence class P of symmetric connections �. The equivalence relation, defining the
class P , is

�
P≡ �′ ⇔ ∃ one-form ψνdxν such that �′μ

νρ = �μνρ + δμν ψρ + δμρ ψν. (C)

The class P defines a family of geodesics without a preferred parametrization. The
direction of a vector Y that undergoes parallel transport along the trajectory of a vector
field X changes when � is replaced by �′, unless Y‖X . This direction does not change
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when � is replaced by �′′μ
νρ = �

μ
νρ + δμρ ψν . The replacement � 	→ �′′ does not, how-

ever, respect the symmetry of connections. The class S of connections defined by the

equivalence relation �
S≡ �′′ (for some ψ) determines the same family of geodesics

as P , provided that P ∩ S �= ∅. Such properly projective transformations of con-
nections, considered already by J. M. Thomas [12], play a role in the Einstein–Cartan
theory [13].

If g′ is as in (A), then its Christoffel symbols are

�(g′)μνρ = �(g)μνρ + 1
2 (δ

μ
ν f,ρ + δμρ f,ν − gμσ gνρ f,σ ). (D)

The first theorem (Satz 1) in [2] reads: The projective and conformal structures of a
metric space determine uniquely its metric. The simple proof of uniqueness of g, up
to a constant scale factor, given by Weyl, is as follows: if g and g′ = (exp f )g are
conformally related metrics, corresponding to the same projective structure, �(g) and
�(g′) ∈ P , then there hold equations (C) (with � = �(g) and �′ = �(g′)) and
(D). By equating the right sides of those two equations, and using a simple algebraic
argument, one obtains d f = 0 so that the metrics are related by a constant scalar
factor. Weyl, however, considers neither the problem of existence of such a g, nor the
question of compatibility between C and P . He emphasizes though that the metric
tensor can be obtained by observation of the motion of material particles and of the
propagation of light. In the rest of the paper, Weyl introduces a new concept: the
projective curvature tensor, describes its properties, as well as those of the tensor of
conformal curvature, with references to Cotton and Schouten [14].

Let me now turn to the Golden Oldie by Ehlers, Pirani and Schild. In the first section,
the authors convincingly argue in favor of a deductive approach to the foundations of
space-time geometry, based on the use of light rays and freely falling particles, rather
than on clocks of J. L. Synge’s [15,16] chronometric approach. The propagation of
light defines a conformal structure C of Lorentzian signature and freely falling parti-
cles determine the projective structure P . The conformal structure defines the notions
of time-like, null, and space-like vectors. Therefore, one can also introduce the notion
of null projective geodesics: they are geodesics of P with null tangent vectors. The
structures C and P are required to be compatible. This is an important, necessary con-
dition for the existence of a Lorentzian metric underlying both structures, a condition
that Weyl seems to have missed. It is expressed by the requirement that

all null geodesics of C are also geodesics of P . (E)

The authors call a manifold endowed with such a compatible pair (C ,P) a Weyl space,
a notion close to, but not identical with, that of Weyl geometry described above. They
state that a Weyl space has a unique affine structure A such that its geodesics coincide
with the geodesics of P and the property of vectors to be null with respect to C is
preserved by the parallel transport defined by A .

In paragraph (e) on p. 69 they formulate additional assumptions on the geometry of
a Weyl space (C ,P) so that it can be derived from a Riemannian metric g ∈ C such
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that �(g) ∈ P . They are formulated as conditions on the curvature tensor associated
with the affine structure A .

In Sect. 2, EPS formulate four groups of axioms, underlying space-time geometry.
The first concerns its structure as a smooth manifold, and the second—the light propa-
gation and conformal structure. To describe the latter, they introduce a tensor density2

g of signature (+ + +−),

gμν = gμν/| det(gρσ )|1/4 so that det(gμν) = −1.

The density g has weight −1/2 and is invariant with respect to g 	→ (exp f )g so that
the single field g completely characterizes C . The density gμν and its inverse gμν are
used to lower and raise indices. The third group of axioms deals with the projective
structure P; they choose Π ∈ P such that Πν

μν = 0. The very important axiom C
(p. 78) concerns compatibility between P and C . The coefficients of a conformal
connection3 are defined as K = �(g). On the basis of axiom C, the authors derive the
equation

	μνρ − Kμ
νρ = 5qμgνρ − 2δμ(νqρ) for some vector qμ = gμνqν .

It implies that if u is a null vector, then

(	μνρ − Kμ
νρ)u

νuρ‖uμ,

so that null geodesics of C and P coincide and the compatibility condition is satisfied.
The additional assumptions described in part (e) of the Introduction are used, in the

last paragraph of the article, entitled Curvature and Riemannian space-time, to argue
that the structure of a Weyl space leads to a Lorentzian metric, defined up to a constant
scalar factor. Essentially, a Riemannian axiom (p. 82) reduces to the statement that the
curvature tensor of the affine connection A is a 2-form with values in the Lie algebra
of the Lorentz group. One can then appeal to the theorems on holonomy to construct a
reduction of the bundle of frames to (a subgroup of) the Lorentz group; this is known
to be equivalent to the existence of a Lorentzian metric [20,21].

The authors frankly say, on pages 69 and 70, that ‘A fully rigorous formalization [of
our axioms and proofs] has not yet been achieved, but we nevertheless hope that the
main line of reasoning will be intelligible and convincing to the sympathetic reader.’
In particular, the paper does not contain a formal proof of the existence, in a Weyl
space, of the affine structure A with the properties announced in the Introduction
(p. 67).

In connection with the EPS article it is worth to recall the old paper [22] where
Élie Cartan emphasizes the connection between conformal geometry and physics (the
optical universe), defines normal conformal spaces with a vanishing Ricci tensor and

2 To denote this density, EPS use a script g letter in a font that is not available in LaTeX.
3 A word of warning: mathematicians give to the expressions ‘conformal connection’ and ‘projective
connection’ a different meaning than the one used by EPS; see [17,18] and, for a contemporary treatment,
ch. IV in [19].
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states that the tensor of conformal curvature of a Lorentzian space defines four null
directions, thus providing the geometric basis for the later Petrov classification in
Penrose’s form; see also the remark in footnote on p. 164 of [23].

The results of [3] have been extended in [24]: Ehlers and Schild gave there a pro-
jective analogue of the geodetic deviation equation that can be used for a geometric
characterization of projective curvature.

In view of its fundamental character and importance, the EPS paper has attracted,
over the years, considerable interest and led to many publications. Here is only a sam-
ple of references: [25–28]. There is also a recent survey by John Stachel [29]. I think
it is clear that the subject requires and deserves further work.

I am grateful to Engelbert Schücking and Friedrich Hehl for having drawn my
attention to the paper of Hessenberg and explained its significance. Friedrich gave me
also very precious advice on the literature related to the subject of the EPS paper. I
thank Ilka Agricola and Erhard Scholz for illuminating remarks.

Comment by the Golden Oldies Editor: Short biographies of the authors of the paper
were published in our journal on other occasions, namely:

1. Jürgen Ehlers: Gen. Relativ. Gravit. 41(9), 1899 (2009),
doi:10.1007/s10714-009-0841-7.

2. Felix Pirani: Gen. Relativ. Gravit. 41(5), 1199 (2009),
doi:10.1007/s10714-009-0785-y.

3. Alfred Schild: Gen. Relativ. Gravit. 8(11), 955 (1977),
doi:10.1007/BF00759241.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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