Skip to main content
Log in

New constraints on H 0 and Ω m from SZE/X-ray data and baryon acoustic oscillations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hubble constant, H 0, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev–Zeldovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente et al. (Astrophys J 647:25, 2006), we obtain a new estimate of H 0 in the context of a flat Λ CDM model. There is a degeneracy on the mass density parameter (Ω m ) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey. This happens because the BAO signature does not depend on H 0. Our basic finding is that a joint analysis involving these tests yield \({H_0 = 76.5^{+3.35}_{-3.33}}\) km/s/mpc and \({\Omega_{m} = 0.27^{+0.03}_{-0.02}}\). Since the hypothesis of spherical geometry assumed by Bonamente et al. is questionable, we have also compared the above results to a recent work where a sample of galaxy clusters described by an elliptical profile was used in analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunyaev R.A., Zeldovich Ya.B.: The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments Astrophys. Space Phys. 4, 173 (1972)

    ADS  Google Scholar 

  2. Itoh N., Kohyama Y., Nozawa S.: Relativistic corrections to the Sunyaev-Zeldovich effect for clusters of galaxies. Astrophys. J. 502, 7 (1998)

    Article  ADS  Google Scholar 

  3. Bartlett J.G.: The Sunyaev-Zeldovich effect and its uses. Astrophys. Space Sci. 290, 105 (2004)

    Article  ADS  Google Scholar 

  4. Silk J., White S.D.M.: The determination of Q0 using X-ray and microwave observations of galaxy clusters. Astrophys. J. 226, L103 (1978)

    Article  ADS  Google Scholar 

  5. Cavaliere A., Danese L., De Zotti G.: Cosmic distances from X-ray and microwave observations of clusters of galaxies. Astron. Astrophys. 75, 322 (1979)

    ADS  Google Scholar 

  6. Birkinshaw M.: The Sunyaev-Zeldovich effect. Phys. Rep. 310, 97 (1999)

    Article  ADS  Google Scholar 

  7. Carlstrom J.E., Holder G.P., Reese E.D.: Cosmology with the Sunyaev-Zeldovich effect. ARA&A 40, 643 (2002)

    Article  ADS  Google Scholar 

  8. Reese E.D. et al.: Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zeldovich effect. Astrophys. J. 581, 53 (2002)

    Article  ADS  Google Scholar 

  9. Jones M.E. et al.: H0 from an orientation-unbiased sample of Sunyaev-Zeldovich and X-ray clusters. MNRAS 357, 518 (2002)

    Article  ADS  Google Scholar 

  10. De Filippis E., Sereno M., Bautz M.W., Longo G.: Measuring the three-dimensional structure of galaxy clusters. I. Application to a sample of 25 clusters. Astrophys. J. 625, 108 (2005)

    Article  ADS  Google Scholar 

  11. Bonamente M. et al.: Determination of the cosmic distance scale from Sunyaev-Zeldovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006)

    Article  ADS  Google Scholar 

  12. LaRoque S. et al.: X-ray and Sunyaev-Zeldovich effect measurements of the gas mass fraction in galaxy clusters. Astrophys. J. 652, 917 (2006)

    Article  ADS  Google Scholar 

  13. Reiprich T.H., Bohringer H.: The mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J. Lett. 567, 716 (2002)

    Article  ADS  Google Scholar 

  14. Shang C., Haiman Z., Verde L.: Probing cosmology and galaxy cluster structure with the Sunyaev-Zeldovich decrement versus X-ray temperature scaling relation. MNRAS 400, 1085 (2009)

    Article  ADS  Google Scholar 

  15. Fox D.C., Pen U.-L.: The distance to clusters: correcting for asphericity. Astrophys. J. 574, 38 (2002)

    Article  ADS  Google Scholar 

  16. Jing Y.P., Suto Y.: Triaxial modeling of halo density profiles with high-resolution N-body simulations. Astrophys. J. 574, 538 (2002)

    Article  ADS  Google Scholar 

  17. Plionis M., Basilakos S., Ragone-Figueroa C.: Morphological and dynamical properties of low-redshift two degree field galaxy redshift survey groups. Astrophys. J. 650, 770 (2006)

    Article  ADS  Google Scholar 

  18. Sereno M., De Filippis E., Longo G., Bautz M.W.: Measuring the three-dimensional structure of galaxy clusters. II. Are clusters of galaxies oblate or prolate?. Astrophys. J. 645, 170 (2006)

    Article  ADS  Google Scholar 

  19. Morandi A., Pedersen K., Limousin M.: Unveiling the three-dimensional structure of galaxy clusters: resolving the discrepancy between X-ray and lensing masses. Astrophys. J. 713, 491 (2010)

    Article  ADS  Google Scholar 

  20. Etherington, I.M.H.: On the definition of distance in general relativity. Philos. Mag. 15, 761 (1933); Reprinted in Gen. Relativ. Gravit. 39, 1055, 2007

    Google Scholar 

  21. Holanda R.F.L., Lima J.A.S., Ribeiro M.B.: Testing the distance-duality relation with galaxy clusters and type Ia supernovae. Astrophys. J. Lett. 722, L233 (2010)

    Article  ADS  Google Scholar 

  22. Holanda R.F.L., Lima J.A.S., Ribeiro M.B.: Cosmic distance duality relation and the shape of galaxy clusters. Astron. Astrophys. Lett. 528, L14 (2011)

    Article  ADS  Google Scholar 

  23. Li Z., Wu P., Yu H.: Cosmological-model-independent tests for the distance-duality relation from galaxy clusters and type Ia supernova. Astrophys. J. Lett. 729, L14 (2011)

    Article  ADS  Google Scholar 

  24. Eisenstein D.J.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  25. Komatsu E et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  26. Cunha J.V., Marassi L., Lima J.A.S.: Constraining H0 from the Sunyaev-Zeldovich effect, galaxy cluster X-ray data and baryon oscillations. MNRAS 379, L1 (2007)

    Article  ADS  Google Scholar 

  27. Cavaliere A., Fusco-Fermiano R.: The distribution of hot gas in clusters of galaxies. Astron. Astrophys. 667, 70 (1978)

    Google Scholar 

  28. Lima J.A.S., Alcaniz J.S.: Constraining the cosmic equation of state from old galaxies at high redshift. Astron. Astrophys. 357, 393 (2000) [astro-ph/0003189]

    ADS  Google Scholar 

  29. Riess A. et al.: A 3% solution: determination of the hubble constant with the hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011)

    Article  ADS  Google Scholar 

  30. Freedman W.L. et al.: Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  31. Mason B.S. et al.: A measurement of H0 from the Sunyaev-Zeldovich effect. Astrophys. J. 555, L11 (2001)

    Article  ADS  Google Scholar 

  32. Reese, E.D.: Measuring and modeling the universe. In: Freedman, W.L. (ed.), p. 138. Cambridge University Press, Cambridge (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. L. Holanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holanda, R.F.L., Cunha, J.V. & Lima, J.A.S. New constraints on H 0 and Ω m from SZE/X-ray data and baryon acoustic oscillations. Gen Relativ Gravit 44, 501–508 (2012). https://doi.org/10.1007/s10714-011-1292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1292-5

Keywords

Navigation