Skip to main content
Log in

The universe dynamics from topological considerations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the initial global topology of the Universe. In this work we start with two concentric spherical three-dimensional branes S 3, with radius a 1 < a 2 immersed in a five-dimensional space-time. The novel feature of this model is that in the interior brane there exist only spin-zero fundamental fields (scalar fields), while in the exterior one there exist only spin-one fundamental interactions. As usual, the bulk of the universe is dominated by gravitational interactions. In this model, like in the Ekpyrotic one, the Big Bang is consequence of the collision of the branes and causes the existence of the particles predicted by the standard model in the exterior brane (our universe). The scalar fields on the interior brane interact with the spin-one fields on the exterior one only through gravitation, they induce the effect of Scalar Field Dark Matter with an ultra-light mass on the exterior one. We discuss two different regimes where the energy density and the brane tension are compared, with the aim to obtain the observed dynamics of the universe after the collision of the branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carroll, S.M.: Living reviews in relativity (1999). arXiv:astro-ph/0004075v2

  2. Randall L., Sundrum R. et al.: Phys. Rev. Lett. 83, 3370–3373 (1999) arXiv:hep-ph/9905221v1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Dvali G., Gabadadze G., Porrati, M., et al.: Phys. Lett. B 485, 208–214 (2000) arXiv:hep-th/0005016v2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Khoury J., Ovrut B.A., Steinhardt P.J., Turok N. et al.: Phys. Rev. D 64, 123522 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  5. Räsänen, S.: Ph.D. thesis (2002). arXiv:astro-ph/0208282v2

  6. Steinhardt, P.J., Turok, N.: arXiv:hep-th/0111098

  7. Mac Fadden, P.: Ph.D. thesis. arXiv:hep-th/0612008v2

  8. Shiromizu T., Maeda K., Sasaki M. et al.: Phys. Rev. D 62, 024012 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. Liddle A., Ureã-López L.A. et al.: Phys. Rev. Lett. 97, 161301 (2006)

    Article  ADS  Google Scholar 

  10. Niz Quevedo, G.: Ph.D. thesis (2006)

  11. Ida, D.: Extra large dimensions, classical theories of gravity JHEP09 (2000) 014

  12. Maeda K., Mizuno S., Torii T. et al.: Phys. Rev. D 68, 024033 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cordero, R., Vilenkin, A., et al.: Phys. Rev. D 65, 083519. arXiv.hep-th/0107175

  14. Copeland E.J., Liddle A.R., Lidsey J.E. et al.: Phys. Rev. D 64, 023539 (2002)

    Google Scholar 

  15. Lidsey J., Matos T., Ureña L.A. et al.: Phys Rev. D 66, 023514 (2002) arXiv:astro-ph/ 0111292

    Article  MathSciNet  ADS  Google Scholar 

  16. Matos T., Guzmán F.S. et al.: Class. Quant. Grav. 17, L9–L16 (2000) arXiv: gr-qc /9810028

    Article  MATH  Google Scholar 

  17. Boehmer C.G., Harko T. et al.: JCAP 0706, 025 (2007) arXiv:astro-ph/0303455

    ADS  Google Scholar 

  18. Bernal A., Matos T., Núñez D.: Rev. Mex. A.A. 44, 149–160 (2008) arXiv:astro-ph/0303455

    ADS  Google Scholar 

  19. Alcubierre M., Guzmán F.S., Matos T., Núñez D., Ureña L.A., Wiederhold P.: Class. Quant. Grav. 19, 5017–5024 (2002) gr-qc/0110102

    Article  MATH  ADS  Google Scholar 

  20. Matos T., Ureña L.A. et al.: Phys. Rev. D 63, 063506 (2001) arXiv:astro-ph/0006024

    Article  ADS  Google Scholar 

  21. Knop R.A. et al.: Astrophys. J. 598, 102 (2003) arXiv:astro-ph/0309368

    Article  ADS  Google Scholar 

  22. Riess A.G. et al.: Astrophys. J. 607, 665 (2004) arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  23. Gogberashvili M. et al.: Phys. Lett. B 636, 147–149 (2006) arXiv:gr-qc/0511039v2

    Article  ADS  Google Scholar 

  24. García Aspeitia, M.A., Matos, T., Magañ, J., Rodriguez, P.A.: In preparation

  25. Rodriguez, M.I., Matos, C.T.: (2009). arXiv:0908.0054v1 [astro-ph.CO]

  26. Maartens R. et al.: Living Rev. Rel. 7, 7 (2004) arXiv:gr-qc/0312059v2

    Google Scholar 

  27. Coley, A.A.: Proceedings of ERE-99, arXiv:gr-qc/9910074v1

  28. Dodelson, S.: Academic Press–Elsevier, Oxford (2003)

  29. Matos T., Vazquez A., Magaña J.A. et al.: MNRAS., 389, 13957 (2009) arXiv:0806.0683

    Google Scholar 

  30. Langlois D., Maartens R., Sasaki M., Wands D. et al.: Phys. Rev. D 63, 084009 (2001) arXiv: hep-th/0012044

    Article  ADS  Google Scholar 

  31. Maartens R., Wands D., Bassett B.A., Heard I.P.C. et al.: Phys. Rev. D 62, 041302 (2000)

    Article  ADS  Google Scholar 

  32. Lorenzana A. et al.: J. Phys. Conf. Ser. 18, 224–269 (2005) arXiv:hep-ph/0503177v2]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. García-Aspeitia.

Additional information

Part of the Instituto Avanzado de Cosmología (IAC) collaboration http://www.iac.edu.mx/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Aspeitia, M.A., Matos, T. The universe dynamics from topological considerations. Gen Relativ Gravit 43, 315–329 (2011). https://doi.org/10.1007/s10714-010-1093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1093-2

Keywords

Navigation