Skip to main content
Log in

The Lemaître model and the generalisation of the cosmic mass

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider the spherically symmetric metric with a comoving perfect fluid and non-zero pressure—the Lemaître metric—and present it in the form of a calculational algorithm. We use it to review the definition of mass, and to look at the apparent horizon relations on the observer’s past null cone. We show that the introduction of pressure makes it difficult to separate the mass from other physical parameters in an invariant way. Under the usual mass definition, the apparent horizon relation, that relates the diameter distance to the cosmic mass, remains the same as in the Lemaître–Tolman case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albani V.V., Iribarrem A.S., Ribeiro M.B., Stoeger W.R.: Differential density statistics of the galaxy distribution and the luminosity function. Astrophys. J. 657, 760–772 (2007)

    Article  ADS  Google Scholar 

  2. Araújo M.E., Arcuri R.C., Bedran J.L., de Freitas L.R., Stoeger W.R.: Integrating Einstein field equations in observational coordinates with cosmological data functions: nonflat Friedmann–Lemaitre–Robsertson–Walker cases. Astrophys. J. 549, 716–720 (2001)

    Article  ADS  Google Scholar 

  3. Araújo M.E., Roveda S.R.M.M., Stoeger W.R.: Spherically symmetric dust solution of the field equations in observational coordinates with cosmological data functions. Astrophys. J. 560, 7–14 (2001)

    Article  ADS  Google Scholar 

  4. Araújo, M.E., Stoeger, W.R.: Exact spherically symmetric dust solution of the field equations in observational coordinates with cosmological data functions. Phys. Rev. D 60(104020), 1–7 [Errata in Phys. Rev. D 64(049901), 1 (2001)]

    Google Scholar 

  5. Araújo M.E., Stoeger W.R., Arcuri R.C., Bedran J.L.: Solving Einstein field equations in observational coordinates with cosmological data functions: spherically symmetric universes with cosmological constant. Phys. Rev. D 78, 063513 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bishop N., Haines P.: Observational cosmology and numerical relativity. Q. Math. 19, 259 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Cahill M.E., McVittie G.C.: Spherical symmetry and mass–energy in general relativity. I. General theory. J. Math. Phys. 11, 1382–1391 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Ellis G.F.R.: Relativistic cosmology. In: Sachs, R.K. (eds) General relativity and cosmology. Proceedings of International School of Physics “Enrico Fermi” (Varenna), Course XLVII, pp. 104–179. Academic Press, London (1971)

    Google Scholar 

  9. Ellis G.F.R., Nel S.D., Maartens R., Stoeger W.R., Whitman A.P.: Ideal observational cosmology. Phys. Rep. 124, 315–417 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  10. Etherington, I.M.H.: On the definition of distance in general relativity. Philos. Mag. VII 15, 761–773 (1933) [Errata in Gen. Relativ. Gravit. 39, 1055 (2007)]

    Google Scholar 

  11. Hellaby C.: Multicolour observations, inhomogeneity & evolution. Astron. Astrophys. 372, 357–363 (2001)

    Article  ADS  Google Scholar 

  12. Hellaby C.: The mass of the cosmos. Mon. Not. R. Astron. Soc. 370, 239–244 (2006)

    ADS  Google Scholar 

  13. Hellaby C., Alfedeel A.H.A.: Solving the observer metric. Phys. Rev. D 79(043501), 1–10 (2009)

    Google Scholar 

  14. Ishak M.: On perfect fluid models in non-comoving observational spherical coordinates. Phys. Rev. D 69, 124027 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, London (1997). ISBN 0 521 48180 5

  16. Krasiński A.: Editor’s note: the expanding universe. Gen. Relativ. Gravit. 29, 637–639 (1997)

    Article  ADS  Google Scholar 

  17. Kristian J., Sachs R.K.: Observations in cosmology. Astrophys. J. 143, 379 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lemaître, G.: L’Univers en expansion. Ann. Soc. Sci. Bruxelles A 53, 51–85 (1993) [reprinted in Gen. Relativ. Gravit. 29, 641–680 (1997)]

  19. Lu T.H.-C., Hellaby C.: Obtaining the spacetime metric from cosmological observations. Class. Quantum Gravit. 24, 4107–4131 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Maartens R., Matravers D.R.: Isotropic and semi-isotropic observation in cosmology. Class. Quantum Gravit. 11, 2693–2704 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Maartens, R., Humphreys, N.P., Matravers, D.R., Stoeger, W.R.: Inhomogeneous universes in observational coordinates. Class. Quantum Gravit. 13, 253 (1996) [Errata in Class. Quantum Gravit. 13, 1689 (1996)]

    Google Scholar 

  22. McClure M.L., Hellaby C.: Determining the metric of the cosmos: stability, accuracy, and consistency. Phy. Rev. D 78(044005), 1–17 (2008)

    Google Scholar 

  23. Misner C.W., Sharp D.H.: Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 136, B571–B576 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  24. Mustapha N., Hellaby C., Ellis G.F.R.: Large scale inhomogeneity versus source evolution—can we distinguish them observationally?. Mon. Not. R. Astron. Soc. 292, 817–830 (1997)

    ADS  Google Scholar 

  25. Penrose R.: General relativistic energy flux and elementary optics. In: Hoffman, B. (eds) Perspectives in Geometry and Relativity: Essays in Honour of Vaclav Hlavaty, pp. 259–274. Indiana University Press, Bloomington (1966)

    Google Scholar 

  26. Podurets, M.A.: On one form of Einstein’s equations for a spherically symmetrical motion of a continuous medium. Astron. Z. 41, 28–32 (1964) [Sov. Astron. AJ 8, 19–22 (1964)]

    Google Scholar 

  27. Ribeiro M.B., Stoeger W.R.: Relativistic cosmology number counts and the luminosity function. Astrophys. J. 592, 1–16 (2003)

    Article  ADS  Google Scholar 

  28. Stoeger W.R., Ellis G.F.R., Nel S.D.: Observational cosmology: III. Exact spherically symmetric dust solutions. Class. Q. Gravit. 9, 509–526 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  29. Stoeger W.R., Nel S.D., Ellis G.F.R.: Observational cosmology: IV. Perturbed spherically symmetric dust solutions. Class. Q. Gravit. 9, 1711–1723 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  30. Stoeger W.R., Nel S.D., Ellis G.F.R.: Observational cosmology: V. solutions of the first order general perturbation equations. Class. Q. Gravit. 9, 1725–1751 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  31. Stoeger W.R., Nel S.D., Maartens R., Ellis G.F.R.: The fluid-ray tetrad formulation of Einstein’s field equations. Class. Quantum Gravit. 9, 493–507 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Temple G.: New systems of normal coordinates for relativistic optics. Proc. R. Soc. Lond. A 168, 122 (1938)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alnadhief H. A. Alfedeel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfedeel, A.H.A., Hellaby, C. The Lemaître model and the generalisation of the cosmic mass. Gen Relativ Gravit 42, 1935–1952 (2010). https://doi.org/10.1007/s10714-010-0971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0971-y

Keywords

Navigation