Skip to main content
Log in

Lemaître model and cosmic mass

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The mass of a sphere of simmetry in the Lemaître universe is discussed using the Hawking–Hayward quasi-local energy and clarifying existing ambiguities. A covariantly conserved current introduced by Cahill and McVittie is shown to be a multiple of the Kodama energy current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By “sphere of symmetry” we mean a 2-dimensional surface which is an orbit of the isometry of the spacetime manifold describing spherical symmetry (of course, such orbits exist through any point of a spherically symmetric spacetime).

  2. In retrospect, this is a good argument because there is little arguing on the physical mass of the Schwarzschild spacetime, and the choice proved to give the correct answer (see below).

References

  1. Lemaître, G.: Ann. Soc. Sci. Bruxelles A 53, 51 (1933) [reprinted in Gen. Relativ. Gravit. 29, 641 (1997)]

  2. Tolman, R.C.: Proc. Natl. Acad. Sci. USA 20, 169 (1934)

    Article  ADS  Google Scholar 

  3. Bondi, H.: Mon. Not. R. Astron. Soc. 107, 410 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  4. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  5. Bolejko, K., Celerier, M.-N., Krasiński, A.: Class. Quantum Grav. 28, 164002 (2011)

    Article  ADS  Google Scholar 

  6. Alfedeel, A.A.H., Hellaby, C.: Gen. Relativ. Gravit. 42, 1935 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  7. Pavlidou, V., Tetradis, N., Tomaras, T.N.: JCAP 1405, 017 (2014)

    Article  ADS  Google Scholar 

  8. Bolejko, K., Hellaby, C., Alfedeel, A.H.A.: JCAP 1109, 011 (2011)

    Article  ADS  Google Scholar 

  9. Nogueira, F.A.M.G.: arXiv:1312.5005

  10. Iribarrem, A. et al.: arXiv:1308.2199

  11. Marra, V., Paakkonen, M.: JCAP 1201, 025 (2012)

    Article  ADS  Google Scholar 

  12. Clarkson, C., Regis, M.: JCAP 1102, 013 (2011)

    Article  ADS  Google Scholar 

  13. Clarkson, C., Maartens, R.: Class. Quantum Grav. 27, 124008 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Moradi, R., Firouzjaee, J.T., Mansouri, R.: arXiv:1301.1480

  15. Leithes, A., Malik, K.A.: arXiv:1403.7661

  16. Durrer, R.: The Cosmic Microwave Background. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  17. Hawking, S.W.: J. Math. Phys. 9, 598 (1968)

    Article  ADS  Google Scholar 

  18. Hayward, S.A.: Phys. Rev. D 49, 831 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kodama, H.: Prog. Theor. Phys. 63, 1217 (1980)

    Article  ADS  Google Scholar 

  20. Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hernandez, W.C., Misner, C.W.: Astrophys. J. 143, 452 (1966)

    Article  ADS  Google Scholar 

  22. Cahill, M.E., McVittie, G.C.: J. Math. Phys. 11, 1382 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  24. Szabados, L.: Living Rev. Relat. 7, 4 (2004)

    ADS  Google Scholar 

  25. Hayward, S.A.: Phys. Rev. D 53, 1938 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. Faraoni, V.: Phys. Rev. D 84, 024003 (2011)

    Article  ADS  Google Scholar 

  27. Carrera, M., Giulini, D.: Rev. Mod. Phys. 82, 169 (2010)

    Article  ADS  Google Scholar 

  28. McVittie, G.C.: Mon. Not. R. Astron. Soc. 93, 325 (1933)

    Article  ADS  Google Scholar 

  29. Nielsen, A.B., Visser, M.: Class. Quantum Grav. 23, 4637 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. Abreu, G., Visser, M.: Phys. Rev. D 82, 044027 (2010)

    Article  ADS  Google Scholar 

  31. Booth, I., Brits, L., Gonzalez, J.A., van den Broeck, V.: Class. Quantum Grav. 23, 413 (2006)

    Article  ADS  Google Scholar 

  32. Gao, C., Chen, X., Shen, Y.-G., Faraoni, V.: Phys. Rev. D 84, 104047 (2011)

    Article  ADS  Google Scholar 

  33. Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quantum Grav. 27, 015006 (2010)

    Article  ADS  Google Scholar 

  34. Faraoni, V.: Galaxies 1, 114 (2013). [arXiv:1309.4915]

    Article  ADS  Google Scholar 

  35. Faraoni, V.: Lectures on Cosmological and Black Hole Apparent Horizons. Springer, New York (2015)

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by Bishop’s University and by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Faraoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraoni, V. Lemaître model and cosmic mass. Gen Relativ Gravit 47, 84 (2015). https://doi.org/10.1007/s10714-015-1926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1926-0

Keywords

Navigation