Skip to main content
Log in

Signatures of an emergent gravity from black hole entropy

  • Essay Awarded by the Gravity Research Foundation
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The existence of a thermodynamic description of horizons indicates that spacetime has a microstructure. While the “fundamental” degrees of freedom remain elusive, quantizing Einstein’s gravity provides some clues about their properties. A quantum AdS black hole possesses an equispaced mass spectrum, independent of Newton’s constant, G, when its horizon radius is large compared to the AdS length. Moreover, the black hole’s thermodynamics in this limit is inextricably connected with its thermodynamics in the opposite (Schwarzschild) limit by a duality of the Bose partition function. G, absent in the mass spectrum, reemerges in the thermodynamic description through the Schwarzschild limit, which should be viewed as a natural “ground state”. It seems that the Hawking-Page phase transition separates fundamental, “particle-like” degrees of freedom from effective, “geometric” ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Ph.D. thesis, Princeton University (1972)

  2. Bekenstein J.D.: Lett. Nuovo Cimento 4, 737 (1972)

    Article  ADS  Google Scholar 

  3. Bekenstein J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bardeen J.M., Carter B., Hawking S.W.: Comm. Math. Phys. 31, 161 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Hawking S.W.: Comm. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  6. Strominger A., Vafa C.: Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horowitz G.T., Polchinski J.: Phys. Rev. D 55, 6189 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dabholkar A.: Phys. Rev. Lett. 94, 241301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hyun S., Kim W.T., Lee J.: Phys. Rev. D 59, 084020 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Emparan R.: JHEP 9906, 036 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Aharony O., Gubser S.S., Maldacena J.M., Ooguri H., Oz Y.: Phys. Rept. 323, 183 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hawking S.W., Maldacena J., Strominger A.: JHEP 0105, 001 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Mukherji S.A., Pal S.S.: JHEP 0205, 026 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chakrabarti S.K., Gupta K.S., Sen S.: Int. J. Mod. Phys. A 23, 2547 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Rovelli C.: Phys. Rev. Lett. 77, 3288 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Ashtekar A., Baez J., Corichi A., Krasnov K.: Phys. Rev. Lett. 80, 904 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Domagala M., Lewandowski J.: Class. Quant. Gravit. 21, 5233 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Meissner K.A.: Class. Quant. Gravit. 21, 5245 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Corichi A., Diáz-Polo J., Fernández-Borja E.: Phys. Rev. Lett. 98, 181301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Agulló I., Barbero J.F., Diáz Polo G.J., Fernández-Borja E., Villaseňor E.J.S.: Phys. Rev. Lett. 100, 211301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Vaz C., Gutti S., Kiefer C., Singh T.P., Wijewardhana L.C.R.: Phys. Rev. D 77, 064021 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tibrewala R., Gutti S., Singh T.P., Vaz C.: Phys. Rev. D 77, 064012 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Vaz C., Tibrewala R., Singh T.P.: Phys. Rev. D 78, 024019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Vaz C., Wijewardhana L.C.R.: Phys. Rev. D 79, 084014 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuchař K.: Phys. Rev. D 50, 3961 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kastrup H., Thiemann T.: Nucl. Phys. B 425, 665 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Vaz C., Witten L., Singh T.P.: Phys. Rev. D 63, 104020 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kiefer C., Mueller-Hill J., Vaz C.: Phys. Rev. D 73, 044025 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Vaz C., Kiefer C., Singh T.P., Witten L.: Phys. Rev. D 67, 0204014 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Padmanabhan T.: Phys. Rept. 406, 49–125 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hardy G., Ramanujan S.: Proc. Lond. Math. Soc. 17, 75 (1918)

    Article  Google Scholar 

  32. Jacobson T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Padmanabhan, T.: AIPConf. Proc. 939, 114 (2007). [arXiv:0706.1654]

  34. Hawking S.W., Page D.N.: Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenalo Vaz.

Additional information

Fifth Award in the 2009 Essay Competition of the Gravity Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaz, C. Signatures of an emergent gravity from black hole entropy. Gen Relativ Gravit 41, 2307–2311 (2009). https://doi.org/10.1007/s10714-009-0848-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0848-0

Keywords

Navigation