Skip to main content
Log in

Dark matter and cosmic acceleration from Wesson’s IMT

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the present work a procedure is build up, that allows obtaining dark matter (DM) and cosmic acceleration in our 4D universe embedded in a 5D manifold. Both, DM and the factor causing cosmic acceleration, as well ordinary matter are induced in the 4D space-time by a warped, but empty from matter, 5D bulk. The procedure is carried out in the framework of the Weyl–Dirac version (Israelit, Found Phys 35:1725, 2005; Israelit, Found Phys 35:1769, 2005) of Paul Wesson’s Induced Matter Theory (Wesson, Space-time matter, 1999) enriched by Rosen’s approach (Found Phys 12:213, 1982). Considering chaotically oriented Weyl vector fields, which exist in microscopic cells, we obtain cold dark matter (CDM) consisting of weylons, massive bosons having spin 1. Assuming homogeneity and isotropy at large scale we derive cosmological equations in which luminous matter, CDM and dark energy may be considered separately. Making in the given procedure use of present observational data one can develop a model of the Universe with conventional matter, DM and cosmic acceleration, induced by the 5D bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner M.S., Huterer D.: Journal of the Physical Soc. of Japan 76, 111015 (2007) arXiv:0706.2186 [astro-ph]

    Article  ADS  Google Scholar 

  2. Durrer R., Maartens R.: Gen. Relativ. Gravit. 40, 301 (2008). doi:10.1007/s10714-007-0549-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Kamionkowski, M.: Dark Matter and Dark Energy. arXiv:0706.2986[astro-ph]. To be published by Cambridge University. In: Visions of Discovery (in honor of Charles Townes)

  4. Kolb E.W., Turner M.S.: The Early Universe. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  5. Riess A. et al.: Astron. J. 116, 1009 (1998). doi:10.1086/300499

    Article  ADS  Google Scholar 

  6. Perlmutter S. et al.: Astrophys. J. 517, 565 (1999). doi:10.1086/307221

    Article  ADS  Google Scholar 

  7. Halpern P., Wesson P.: Brave New Universe. Joseph Henry Press, Washington (2006)

    Google Scholar 

  8. Wesson P.S.: Space-Time-Matter. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  9. Israelit M.: Found. Phys. 35, 1725 (2005). doi:10.1007/s10701-005-6518-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Israelit M.: Found. Phys. 35, 1769 (2005). doi:10.1007/s10701-005-6523-8

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Rosen N.: Found. Phys. 12, 213 (1982). doi:10.1007/BF00726849

    Article  MathSciNet  ADS  Google Scholar 

  12. Kaluza, T.: Sitzungsber. Preuss. Akad. Wiss. 966 (1921)

  13. Klein O.: Z. Phys. 37, 895 (1926). doi:10.1007/BF01397481

    Article  ADS  Google Scholar 

  14. Einstein, A., Mayer, W.: Sitzungsber. Preuss. Akad. Wiss. 541 (1931)

  15. Einstein, A., Mayer, W.: Sitzungsber. Preuss. Akad. Wiss. 130 (1932)

  16. Einstein A., Bergmann P.G.: Ann. Math. 39, 683 (1938). doi:10.2307/1968642

    Article  MathSciNet  Google Scholar 

  17. Bergmann, P.G.: Introduction to the Theory of Relativity, Chaps. 17 and 18. Prentice-Hall, Englewood Cliffs (1942)

  18. Joseph D.W.: Phys. Rev. 126, 319 (1962). doi:10.1103/PhysRev.126.319

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Akama K.: Lect. Notes Phys. 176, 267 (1982). doi:10.1007/3-540-11994-9_41

    Article  ADS  Google Scholar 

  20. Rubakov V.A., Shaposhnikov M.E.: Phys. Lett B 125, 136 (1983)

    Article  ADS  Google Scholar 

  21. Visser M.: Phys. Lett B159, 22 (1985)

    MathSciNet  ADS  Google Scholar 

  22. Randall L., Sundrum R.: Phys. Rev. Lett. 83, 3370 (1999). doi:10.1103/PhysRevLett.83.3370

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Randall L., Sundrum R.: Phys. Rev. 83, 4690 (1999)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Arkani-Hamed N., Dimipoulos S., Dvali G.: Phys. Lett. B 429, 263 (1989). doi:10.1016/S0370-2693(98)00466-3

    ADS  Google Scholar 

  25. Arkani-Hamed N., Dimipoulos S., Dvali G.: Phys. Rev. D Part. Fields 59, 086004 (1999). doi:10.1103/PhysRevD.59.086004

    ADS  Google Scholar 

  26. Wesson P.S., Ponce de Leon J.: J. Math. Phys. 33, 3883 (1992). doi:10.1063/1.529834

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Wesson P.S.: Phys. Lett. B 276, 299 (1992). doi:10.1016/0370-2693(92)90322-U

    Article  MathSciNet  ADS  Google Scholar 

  28. Wesson P.S.: Astrophys. J. 394, 19 (1992). doi:10.1086/171555

    Article  ADS  Google Scholar 

  29. Ponce de Leon J., Wesson P.S.: J. Math. Phys. 34, 4080 (1993). doi:10.1063/1.530028

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Overduin J.M., Wesson P.S.: Phys. Rep. 283, 303–380 (1997). doi:10.1016/S0370-1573(96)00046-4

    Article  MathSciNet  ADS  Google Scholar 

  31. Wesson P.S., Ponce de Leon J., Lim P., Liu H.: Int. J. Mod. Phys. D 2, 163 (1993). doi:10.1142/S0218271893000143

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Wesson P.S.: Astrophys. J. 436, 547 (1994). doi:10.1086/174928

    Article  ADS  Google Scholar 

  33. Liu H.: Class. Quantum Gravity 14, 1651 (1997). doi:10.1088/0264-9381/14/7/006

    Article  ADS  MATH  Google Scholar 

  34. Mashhoon B., Wesson P.S., Liu H.: Gen. Relativ. Gravit. 30, 555 (1998). doi:10.1023/A:1018814123514

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Wesson P.S., Mashhoon B., Liu H., Sajko W.N.: Phys. Lett. B 456, 34 (1999). doi:10.1016/S0370-2693(99)00498-0

    Article  ADS  Google Scholar 

  36. Ponce de Leon J.: Phys. Lett. B 523, 311 (2001). doi:10.1016/S0370-2693(01)01349-1

    Article  ADS  Google Scholar 

  37. Seahra S.S., Wesson P.S.: Gen. Relativ. Gravit. 33, 1731 (2001). doi:10.1023/A:1013023100565

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Wesson P.S., Seahra S.S.: Astrophys. J L75, 557 (2001)

    Google Scholar 

  39. Liu H., Wesson P.S.: Astrophys. J. 562, 1 (2001). doi:10.1086/323525

    Article  ADS  Google Scholar 

  40. Liu H., Wesson P.S.: Int. J. Mod. Phys. D 10, 905 (2001). doi:10.1142/S0218271801001396

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Ponce de Leon J.: Mod. Phys. Lett. A16, 1405 (2001)

    MathSciNet  ADS  Google Scholar 

  42. Ponce de Leon J.: Mod. Phys. Lett. A17, 2425 (2002)

    MathSciNet  ADS  Google Scholar 

  43. Seahra S.S.: Phys. Rev. D Part. Fields 65, 124004 (2002). doi:10.1103/PhysRevD.65.124004

    MathSciNet  ADS  Google Scholar 

  44. Wesson P.S.: Phys. Lett. B538, 159 (2002)

    MathSciNet  ADS  Google Scholar 

  45. Ponce de Leon J.: Gravit. Cosmol. 8, 272 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  46. Seahra S.S.: Phys. Rev. D Part. Fields 68, 104027 (2003). doi:10.1103/PhysRevD.68.104027

    MathSciNet  ADS  Google Scholar 

  47. Seahra S.S., Wesson P.S.: Class. Quantum Gravity 20, 1321 (2003). doi:10.1088/0264-9381/20/7/306

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Wesson P.S.: Found. Phys. Lett. 19, 285 (2006). doi:10.1007/s10702-006-0519-2

    Article  MathSciNet  MATH  Google Scholar 

  49. Mashhoon B., Wesson P.: Gen. Relativ. Gravit. 39, 1403 (2007). doi:10.1007/s10714-007-0445-z

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Weyl, H.: Sitzungsber. Preuss. Akad. Wiss. 465 (1918)

  51. Weyl H.: Ann. Phys. Leipzig 59, 101 (1919). doi:10.1002/andp.19193641002

    Article  ADS  Google Scholar 

  52. Weyl H.: Raum, Zeit, Materie. Springer, Berlin (1923)

    Google Scholar 

  53. Dirac P.A.M.: Proc. R. Soc. Lond. A Math. Phys. Sci. 33, 403 (1973). doi:10.1098/rspa.1973.0070

    Article  MathSciNet  ADS  Google Scholar 

  54. Israelit M.: Found. Phys. 37, 1628 (2007). doi:10.1007/s10701-007-9181-1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Israelit M.: Gen. Relativ. Gravit. 40, 2469 (2008). doi:10.1007/s10714-008-0633-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Proca A.L.: J. Phys. Radium 7, 347 (1936). doi:10.1051/jphysrad:0193600708034700

    Article  MATH  Google Scholar 

  57. Israelit M., Rosen N.: Found. Phys. 22, 555 (1992). doi:10.1007/BF00732923

    Article  MathSciNet  ADS  Google Scholar 

  58. Israelit M., Rosen N.: Found. Phys. 24, 901 (1994). doi:10.1007/BF02067654

    Article  ADS  Google Scholar 

  59. Israelit M., Rosen N.: Found. Phys. 25, 763 (1995). doi:10.1007/BF02059127

    Article  ADS  Google Scholar 

  60. Israelit M.: The Weyl-Dirac Theory and Our Universe. Nova Science, Commack (1999)

    Google Scholar 

  61. Israelit M., Rosen N.: Astrophys. J. 342, 627 (1989). doi:10.1086/167622

    Article  MathSciNet  ADS  Google Scholar 

  62. Weinberg, S.: Gravitation and Cosmology, p. 469. Wiley, New York (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Israelit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelit, M. Dark matter and cosmic acceleration from Wesson’s IMT. Gen Relativ Gravit 41, 2847–2866 (2009). https://doi.org/10.1007/s10714-009-0811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0811-0

Keywords

Navigation