Abstract
Wheeler’s Superspace is the arena in which Geometrodynamics takes place. I review some aspects of its geometrical and topological structure that Wheeler urged us to take seriously in the context of canonical quantum gravity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Alvarez-Gaumé L., Ginsparg P.: The structure of gauge and gravitational anomalies. Ann. Phys. 161, 423–490 (1985)
Aneziris C. et al.: Aspects of spin and statistics in general covariant theories. Int. J. Mod. Phys. A 14(20), 5459–5510 (1989)
Aneziris C. et al.: Statistics and general relativity. Mod. Phys. Lett. A 4(4), 331–338 (1989)
Arens R.: Classical Lorentz invariant particles. J. Math. Phys. 12(12), 2415–2422 (1971)
Bacry H.: Space-time and degrees of freedom of the elementary particle. Commun. Math. Phys. 5(2), 97–105 (1967)
Barbero F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51(10), 5507–5510 (1995)
Barbour, J., Foster, B.Z.: Constraints and gauge transformations: Dirac’s theorem is not always valid. arXiv:0808.1223v1, (2008)
Barbour J., Foster B.Z., Murchadha N.Ó.: Relativity without relativity. Classical Quantum Gravity 19(12), 3217–3248 (2002)
Barbour, J., Murchadha, N.Ó.: Classical and quantum gravity on conformal superspace. arXiv: gr-qc/9911071v1 (1999)
Beig R., Murchadha N.Ó.: The Poincaré group as symmetry group of canonical general relativity. Ann. Phys. 174, 463–498 (1987)
Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge Band 10. Springer, Berlin (1987)
Breitenlohner P., Maison D.: On the Geroch group. Ann. Inst. Henri Poincaré A 46(2), 215–246 (1987)
Brill D.R., Wheeler J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29(3), 465–479 (1957)
Damour T., Kleinschmidt A., Nicolai H.: Constraints and the E 10 coset model. Classical Quantum Gravity 24(23), 6097–6120 (2007)
Damour, T., Nicolai, H.: Symmetries, singularities and the de-emergence of space. arXiv:0705.2643v1 (2007)
DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Physical Review, 160(5), 1113–1148, (1967). Erratum, ibid. 171(5), 1834 (1968)
Dowker F., Sorkin R.: A spin-statistics theorem for certain topological geons. Classical Quantum Gravity 15, 1153–1167 (1998)
Dowker F., Sorkin R.: Spin and statistics in quantum gravity. In: Hilborn, R.C., Tino, G.M. (eds) Spin-Statistics Connections and Commutation Relations: Experimental Tests and Theoretical Implications, pp. 205–218. American Institute of Physics, New York (2000)
Du Val P.: Homographies, Quaternions, and Rotations. Clarendon Press, Oxford (1964)
Ebin D.G.: On the space of Riemannian metrics. Bull. Am. Math. Soc. 74(5), 1001–1003 (1968)
Finkelstein D., Rubinstein J.: Connection between spin, statistics, and kinks. J. Math. Phys. 9(11), 1762–1779 (1968)
Fischer, A.E.: The theory of superspace. In: Carmeli, M., Fickler, S.I., Witten, L. (eds.) Relativity, proceedings of the Relativity Conference in the Midwest, held June 2–6, 1969, at Cincinnati Ohio, pp 303–357. Plenum Press, New York(1970)
Fischer A.E.: Resolving the singularities in the space of Riemannian geometries. J. Math. Phys. 27, 718–738 (1986)
Fischer A.E., Moncrief V.E.: The structure of quantum conformal superspace. In: Cotsakis, S., Gibbons, G.W. (eds) Global Structure and Evolution in General Relativity, Lecture Notes in Physics, vol. 460, pp. 111–173. Springer, Berlin (1996)
Fouxe-Rabinovitch D.I.: Über die Automorphismengruppen der freien Produkte I. Matematicheskii Sb. 8(50), 265–276 (1940)
Fouxe-Rabinovitch D.I.: Über die Automorphismengruppen der freien Produkte II. Matematicheskii Sb. 9(51), 297–318 (1941)
Freed D.S., Groisser D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Mich. Math. J. 36(3), 323–344 (1989)
Friedman J., Sorkin R.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100–1103 (1980)
Fushchich W., Shtelen V.: Are Maxwell’s equations invariant under the Galilei transformations?. Doklady Akademii Nauk Ukrainy A 3, 22–26 (1991) (In Russian)
Gao L.Z., Yau S.-T.: The existence of negatively Ricci curved metrics on three-manifolds. Invent. Math. 85(3), 637–652 (1986)
Gilbert N.D.: Presentations of the automorphims group of a free product. Proc. Lond. Math. Soc. 54, 115–140 (1987)
Giulini D.: 3-manifolds for relativists. Int. J. Theor. Phys. 33, 913–930 (1994)
Giulini D.: On the configuration-space topology in general relativity. Helv. Phys. Acta 68, 86–111 (1995)
Giulini D.: Quantum mechanics on spaces with finite fundamental group. Helv. Phys. Acta 68, 439–469 (1995)
Giulini D.: What is the geometry of superspace?. Phys. Rev. D 51(10), 5630–5635 (1995)
Giulini D.: The Group Of Large Diffeomorphisms In General Relativity. Banach Center Publications 39, 303–315 (1997)
Giulini D. (2007) Mapping-class groups of 3-manifolds in canonical quantum gravity. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Gravity: Mathematical Models and Experimental Bounds. Birkhäuser Verlag, Basel, (2007). Online available at 〈arxiv.org/pdf/gr-qc/0606066〉.
Giulini D., Kiefer C.: Wheeler–DeWitt metric and the attractivity of gravity. Phys. Lett. A 193(1), 21–24 (1994)
Hatcher, A.E.: Notes on basic 3-manifold topology. Online available at www.math.cornell.edu/~hatcher/3M/3Mdownloads.html
Hojman S.A., Kuchař K., Teitelboim C.: New approach to general relativity. Nat. Phys. Sci. 245, 97–98 (1973)
Hojman S.A., Kuchař K., Teitelboim C.: Geometrodynamics regained. Ann. Phys. 96, 88–135 (1976)
Immirzi G.: Real and complex connections for canonical gravity. Classical Quantum Gravity 14(10), L117–L181 (1997)
Isham, C.J.: Theta–states induced by the diffeomorphism group in canonically quantized gravity. In: Duff, J.J., Isham, C.J. (eds.) Quantum Structure of Space and Time. Proceedings of the Nuffield Workshop, August 3–21 1981, Imperial College London, pp. 37–52. Cambridge University Press, London (1982)
Isham C.J., Kuchař K.V.: Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories. Ann. Phys. 164, 288–315 (1985)
Isham C.J, Kuchař K.V.: Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics. Ann. Phys. 164, 316–333 (1985)
Jackiw R.: Topological investigations of quantized gauge theories. In: DeWitt, B., Stora, R. (eds) Relativity, Groups, and Topology II, Les Houches, Session XL, pp. 37–52. North-Holland, Amsterdam (1984)
Kazdan J.L., Warner F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10(1), 113–134 (1975)
Kiefer C.: Quantum Gravity, International Series of Monographs on Physics, vol. 124, 2nd edn. Clarendon Press, Oxford (2007)
Klauder J., Wheeler J.A.: On the question of a neutrino analog to electric charge. Rev. Mod. Phys. 29(3), 516–517 (1957)
Kneser H.: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresberichte der Deutschen Mathematiker Vereinigung 38, 248–260 (1929)
Kuchař K.: Geometrodynamics regained: a Lagrangian approach. J. Math. Phys. 15(6), 708–715 (1973)
Kuchař K.: Canonical quantum gravity. In: Gleiser, R.J., Kosameh, C.N., Moreschi, O.M. (eds) General Relativity and Gravitation, pp. 119–150. IOP Publishing, Bristol (1993)
Lelong-Ferrand J.: Transformation conformes et quasiconformes des variétés riemanniennes compacts (démonstration de la conjecture de A. Lichnerowicz). Mémoires de la Classe des Sciences de l’Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique 39(5), 3–44 (1971)
Lovelock D.: The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13(6), 874–876 (1972)
McCarty G.S.: Homeotopy groups. Trans. Am. Math. Soc. 106, 293–303 (1963)
McCullough D.: Topological and algebraic automorphisms of 3-manifolds. In: Piccinini, R. (eds) Groups of Homotopy Equivalences and Related Topics. Springer Lecture Notes in Mathematics, vol. 1425, pp. 102–113. Springer, Berlin (1990)
McCullough, D., Miller, A.: Homeomorphisms of 3-manifolds with compressible boundary. Mem. Am. Math. Soc. 61(344) (1986)
Milnor J.W.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84(1), 1–7 (1962)
Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Company, New York (1973)
Moise E.E.: Affine structures in 3-manifolds V The triangulation theorem and Hauptvermutung. Ann. Math 56(1), 96–114 (1952)
Müllner, D. (2008) Orientation Reversal of Manifolds. PhD thesis, Friedrich-Wilhelms-Universität Bonn, October (2008)
Myers S.B., Steenrod N.E.: The group of isometries of a Riemannian manifold. Ann. Math. 40(2), 400–416 (1939)
Nicolai H.: On M-theory. J. Astrophys. Astronomy 20(3–4), 149–164 (1999)
Pons J.M.: Generally covariant theories: The Noether obstruction for realizing certain space-time diffeomorphisms inphase space. Classical Quantum Gravity 20(15), 3279–3294 (2003)
Reidemeister K.: Homotopieringe und Linsenräume. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 11(1), 102–109 (1935)
Samuel J.: Canonical gravity, diffeomorphisms and objective histories. Classical Quantum Gravity 17(22), 4645–4654 (2000)
Samuel J.: Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity?. Classical Quantum Gravity 17(20), L141–L148 (2000)
Seifert, H., Threlfall, W.: A Textbook of Topology. Academic Press, Orlando, Florida, 1980. Translation of the 1934 german edition (1980)
Sorkin, R.: Introduction to topological geons. In: Bergmann, P.G., De Sabbata, V. (eds.), Topological Properties and Global Structure of Space–Time, NATO Advanced Study Institutes Series, vol. B138, p. 249. D. Reidel Publishing Company, Dordrecht-Holland (1986)
Sorkin R.: A general relation between kink-exchange and kink-rotation. Commun. Math. Phys. 115, 421–434 (1988)
Sorkin R.: Classical topology and quantum phases: Quantum geons. In: De Filippo, S., Marinaro, M., Marmo, G., Vilasi, G. (eds) Geometrical and Algebraic Aspects of Nonlinear Field Theory, pp. 201–218. Elsevier, Amsterdam (1989)
Sorkin R., Surya S.: An analysis of the representations of the mapping class group of a multi-geon three-manifold. Int. J. Mod. Phys. A 13(21), 3749–3790 (1998)
Stern, M.D.: Investigations of the Topology of Superspace. PhD thesis, Department of Physics, Princeton University, 28 April (1967)
Teitelboim C.: How commutators of constraints reflect the spacetime structure. Ann. Phys. 79(2), 542–557 (1973)
Thiemann T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)
Thorne K.S., Lee D.L., Lightman A.P.: Foundations for a theory of gravitation theories. Phys. Rev. D 7(12), 563–3578 (1973)
Wheeler J.A.: Phys. Rev. 97(2), 511–536 (1955)
Wheeler J.A.: Geometrodynamics. Academic Press, New York (1962)
Wheeler J.A.: Einsteins Vision. Springer, Berlin (1968)
Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, 1967 Lectures in Mathematics and Physics. pp. 242–307. W.A. Benjamin, New York (1968)
Wheeler J.A.: Particles and geometry. In: Breitenlohner, P., Dürr, H.P. (eds) Unified Theories of Elementary Particles, Lecture Notes in Physics, vol. 160, pp. 189–217. Springer, Berlin (1982)
Whitehead J. H. C.: On incidence matrices, nuclei and homotopy types. Ann. Math. 42(5), 1197–1239 (1941)
Witt D.: Symmetry groups of state vectors in canonical quantum gravity. J. Math. Phys. 27(2), 573–592 (1986)
Witt D.: Vacuum space-times that admit no maximal slices. Phys. Rev. Lett. 57(12), 1386–1389 (1986)
Acknowledgments
I thank Hermann Nicolai and Stefan Theisen for inviting me to this stimulating 405th WE-Heraeus-Seminar on Quantum Gravity and for giving me the opportunity to contribute this paper. I also thank Hermann Nicolai for pointing out [63] and Ulrich Pinkall for pointing out [53].
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
I dedicate this contribution to the scientific legacy of John Wheeler.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Giulini, D. The Superspace of geometrodynamics. Gen Relativ Gravit 41, 785–815 (2009). https://doi.org/10.1007/s10714-009-0771-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10714-009-0771-4