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Abstract Wheeler’s Superspace is the arena in which Geometrodynamics takes
place. I review some aspects of its geometrical and topological structure that Wheeler
urged us to take seriously in the context of canonical quantum gravity.

Keywords Quantum gravity · Superspace · Three-manifolds

“The stage on which the space of the Universe moves is certainly not space itself.
Nobody can be a stage for himself; he has to have a larger arena in which to move.
The arena in which space does its changing is not even the space-time of Einstein,
for space-time is the history of space changing with time. The arena must be a
larger object: Superspace. . . It is not endowed with three or four dimensions—
it’s endowed with an infinite number of dimensions.” (J.A. Wheeler: Superspace,
Harper’s Magazine, July 1974, p. 9)

1 Introduction

From somewhere in the 1950s on, John Wheeler repeatedly urged people who were
interested in the quantum-gravity programme to understand the structure of a mathe-
matical object that he called Superspace [79,80]. The intended meaning of
‘Superspace’ was that of a set, denoted by S(Σ), whose points faithfully correspond
to all possible Riemannian geometries on a given three-manifold Σ . Hence, in fact,
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786 D. Giulini

there are infinitely many Superspaces, one for each three-manifold Σ . The physical
significance of this concept is suggested by the dynamical picture of General Rela-
tivity (henceforth abbreviated by GR), according to which spacetime is the history
(time evolution) of space. Accordingly, in Hamiltonian GR, Superspace plays the rôle
of the configuration space the cotangent bundle of which gives the phase space of
3d-diffeomorphism reduced states. Moreover, in Canonical Quantum Gravity (hence-
forth abbreviated by CQG), Superspace plays the rôle of the domain for the wave
function which is still subject to the infamous Wheeler–DeWitt equation. In fact,
Bryce De Witt characterised the motivation for his seminal paper on CQG as follows:

“The present paper is the direct outcome of conversations with Wheeler, during
which one fundamental question in particular kept recurring: What is the struc-
ture of the domain manifold for the quantum-mechanical state functional?”
([16], p. 115)

More than 41 years after DeWitt’s important contribution I simply wish to give a
small overview over some of the answers given so far to the question: What is the
structure of Superspace? Here I interpret ‘structure’ more concretely as ‘metric struc-
ture’ and ‘topological structure’. But before answers can be attempted, we need to
define the object at hand. This will be done in the next section; and before doing that,
we wish to say a few more words on the overall motivation.

Minkowski space is the stage for relativistic particle physics. It comes equipped
with some structure (topological, affine, causal, metric) that is not subject to dynamical
changes. Likewise, as was emphasised by Wheeler, the arena for Geometrodynam-
ics is Superspace, which also comes equipped with certain non-dynamical structures.
The topological and geometric structures of Superspace are as much a background for
GR as the Minkowski space is for relativistic particle physics. Now, Quantum Field
Theory has much to do with the automorphism group of Minkowski space and, in par-
ticular, its representation theory. For example, all the linear relativistic wave equations
(Klein–Gordan, Weyl, Dirac, Maxwell, Proca, Rarita–Schwinger, Dirac–Bargmann,
etc.) can be understood in this group-theoretic fashion, namely as projection condi-
tions onto irreducible subspaces in some auxiliary Hilbert space. (In the same spirit a
characterisation of ‘classical elementary system’ has been given as one whose phase
space supports a transitive symplectic action of the Poincaré group [4,5].) This is how
we arrive at the classifying meaning of ‘mass’ and ‘spin’. Could it be that Quantum
Gravity has likewise much to do with the automorphism group of Superspace? Can
we understand this group in any reasonable sense and what has it to do with four
dimensional diffeomorphisms? If elementary particles are unitary irreducible repre-
sentations of the Poincaré group, as Wigner once urged, what would the ‘elementary
systems’ be that corresponded to irreducible representations of the automorphism
group of Superspace?

I do not know any reasonably complete answer to any of these questions. But the
analogies at least suggests the possibility of some progress if these structures and
their automorphisms could be understood in any depth. This is a difficult task, as John
Wheeler already foresaw forty years ago:
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The Superspace of geometrodynamics 787

“Die Struktur des Superraumes enträtseln? Kaum in einem Sprung, und kaum
heute!” ([79], p. 61)

Related in spirit is a recent approach in the larger context of 11-dimensional super-
gravity (see [14,15] and references therein), which is based on the observation that
the supergravity dynamics in certain truncations corresponds to geodesic motion of a
massless spinning particle on an E10 coset space. Here the Wheeler–DeWitt metric (9c)
appears naturally with the right GR-value λ = 1, which in our context is the only value
compatible with four-dimensional diffeomorphism invariance, as we will discuss. This
may suggest an interesting relation between E10 and spacetime diffeomorphisms.

2 Defining Superspace

As already said, Superspace S(Σ) is the set of all Riemannian geometries on the three-
manifold Σ . Here ‘geometries’ means ‘metrics up to diffeomorphisms’. Hence S(Σ)

is identified as set of equivalence classes in Riem(Σ), the set of all smooth (C∞)
Riemannian metrics in Σ under the equivalence relation of being related by a smooth
diffeomorphism. In other words, the group of all (C∞) diffeomorphisms, Diff(Σ),
has a natural right action on Riem(Σ) via pullback and the orbit space is identified
with S(Σ):

S(Σ) := Riem(Σ)/Diff(Σ). (1)

Let us now refine this definition. First, we shall restrict attention to those Σ which
are connected and closed (compact without boundary). We note that Einstein’s field
equations by themselves do not exclude any such Σ . To see this, recall the form of
the constraints for initial data (h, K ), where h ∈ Riem(Σ) and K is a symmetric
covariant 2nd rank tensor-field (to become the extrinsic curvature of Σ in spacetime,
once the latter is constructed from the dynamical part of Einstein’s equations)

‖K‖2
h − (Trh(K ))2 − (R(h) − 2�) = −(2κ)ρm, (2a)

divh (K − h Trh(K )) = (cκ) j, (2b)

where ρm and jm are the densities of energy and momentum of matter respectively,
R(h) is the Ricci scalar for h, and κ = 8πG/c4. Now, it is known that for any smooth
function f : Σ → R which is negative somewhere on Σ there exists an h ∈ Riem(Σ)

so that R(h) = f [47]. Given that strong result, we may easily solve (2) for j = 0
on any compact Σ as follows: First we make the Ansatz K = αh for some constant
α and some h ∈ Riem(Σ). This solves (2b), whatever α, h will be. Geometrically
this means that the initial Σ will be a totally umbillic hypersurface in spacetime. Next
we solve (2a) by fixing α so that α2 > (� + κ supΣ(ρm))/3 and then choosing h
so that R(h) = 2� + 2κρm − 6α2, which is possible by the result just cited because
the right-hand side is negative by construction. This argument can be generalised to
non-compact manifolds with a finite number of ends and asymptotically flat data [84].

Next we refine the definition (1), in that we restrict the group of diffeomorphisms
to the proper subgroup of those diffeomorphisms that fix a preferred point, called
∞ ∈ Σ , and the tangent space at this point:
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788 D. Giulini

DiffF(Σ) := {
φ ∈ Diff(Σ) | φ(∞) = ∞, φ∗(∞) = id|T∞Σ

}
. (3)

The reason for this is twofold: First, if one is genuinely interested in closed Σ , the
space S(Σ) := Riem(Σ)/Diff(Σ) is not a manifold if Σ allows for metrics with
non-trivial isometry groups (not all Σ do; compare footnote 3). At those metrics
Diff(Σ) clearly does not act freely, so that the quotient Riem(Σ)/Diff(Σ) has the
structure of a stratified manifold with nested sets of strata ordered according to the
dimension of the isometry groups [22]. In that case there is a natural way to min-
imally resolve the singularities [23] which amounts to taking instead the quotient
Riem(Σ) × F(Σ)/Diff(Σ), where F(Σ) is the bundle of linear frames over Σ . The
point here is that the action of Diff(Σ) is now free since there simply are no non-trivial
isometries that fix a frame. Indeed, if φ is an isometry fixing some frame, we can use
the exponential map and φ ◦ exp = exp ◦φ∗ (valid for any isometry) to show that
the subset of points in Σ fixed by φ is open. Since this set is also closed and Σ is
connected, φ must be the identity.

Now, the quotient Riem(Σ) × F(Σ)/Diff(Σ) is isomorphic1 to

SF(Σ) := Riem(Σ)/DiffF(Σ) , (4)

albeit not in a natural way, since one needs to choose a preferred point ∞ ∈ Σ . This
may seem somewhat artificial if really all points in Σ are considered to be equally real,
but this is irrelevant for us as long as we are only interested in the isomorphicity class
of Superspace. On the other hand, if we consider Σ as the one-point compactification
of a manifold with one end2, then (4) would be the right space to start with anyway
since then diffeomorphisms have to respect the asymptotic geometry in that end, like,
e.g., asymptotic flatness. Therefore, from now on, we shall refer to SF(Σ) as defined in
(4) as Superspace. In view of the original definition (1) it is usually called ‘extended
Superspace’ [22].

Clearly, the move from (1) to (4) would have been unnecessary in the closed case
if one restricted attention to those manifolds Σ which do not allow for metrics with
continuous symmetries, i.e. whose degree of symmetry3 is zero. Even though these
manifolds are not the ‘obvious’ ones one tends to think of first, they are, in a sense,
‘most’ three-manifolds. On the other hand, in order not to deprive ourselves form the
possibility of physical idealisations in terms of prescribed exact symmetries, we prefer

1 “Isomorphic as what?” one may ask. The answer is: as ILH (inverse-limit Hilbert) manifolds. In the ILH
sense the action of Diff(Σ) on Riem(Σ) × F(Σ) is smooth, free, and proper; see [23] for more details and
references.
2 The condition of ‘asymptotic flatness’ of an end includes the topological condition that the one-point
compactification is again a manifold. This is the case iff there exists a compact subset in the manifold the
complement of which is homeomorphic to the complement of a closed solid ball in R

3.
3 Let I(Σ, h) := {φ ∈ Diff(Σ) | φ∗h = h} be the isometry group of (Σ, h), then it is well known that
dim I(Σ, h) ≤ 1

2 n(n+1), where n = dim Σ . I(Σ, h) is compact if Σ is compact (see, e.g., Sect. 5 of [62]).
Conversely, if Σ allows for an effective action of a compact group G then it clearly allows for a metric h
on which G acts as isometries (just average any Riemannian metric over G.) The degree of symmetry of
Σ , denoted by deg(Σ), is defined by deg(Σ) := suph∈Riem(Σ){dim I(Σ, h)}. For compact Σ the degree
of symmetry is zero iff Σ cannot support an action of the circle group SO(2). A list of three-manifolds
with deg > 0 can be found in [22] whereas [24] contains a characterisation of deg = 0 manifolds.
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The Superspace of geometrodynamics 789

to work with SF(Σ) defined in (4) (called ‘extended Superspace’ in [22], as already
mentioned).

Let us add a few words on the point-set topology of Riem(Σ) and SF(Σ). First,
Riem(Σ) is an open positive convex cone in the topological vector space of smooth
(C∞) symmetric covariant tensor fields over Σ . The latter space is a Fréchet space,
that is, a locally convex topological vector space that admits a translation-invari-
ant metric, d , inducing its topology and with respect to which the space is complete.
The metric can be chosen such that Diff(Σ) preserves distances. Riem(Σ) inherits this
metric which makes it a metrisable topological space that is also second countable
(recall also that metrisability implies paracompactness). SF(Σ) is given the quotient
topology, i.e. the strongest topology in which the projection Riem(Σ) → SF(Σ) is
continuous. This projection is also open since DiffF(Σ) acts continuously on Riem(Σ).
A metric d on SF(Σ) is defined by

d([h1], [h2]) := sup
φ1,φ2∈DiffF(Σ)

d(φ∗
1 h1, φ

∗
2 h2) , (5)

which also turns SF(Σ) into a connected (being the continuous image of the connected
Riem(Σ)) metrisable and second countable topological space. Hence Riem(Σ) and
SF(Σ) are perfectly decent connected topological spaces which satisfy the strongest
separability and countability axioms. For more details we refer to [22,23,73].

The basic geometric idea is now to regard Riem(Σ) as principal fibre bundle with
structure group DiffF(Σ) and quotient SF(Σ):

DiffF(Σ)
i−→ Riem(Σ)

p−→ SF(Σ) (6)

where the maps i are the inclusion and projection maps respectively. This is made
possible by the so-called ‘slice theorems’ (see [20,22]), and the fact that the group
acts freely and properly. This bundle structure has two far-reaching consequences
regarding the geometry and topology of SF(Σ). Let us discuss these in turn.

3 Geometry of Superspace

Elements of the Lie algebra diffF(Σ) of DiffF(Σ) are vector fields on Σ . For any
such vector field ξ on Σ there is a vector field Vξ on Riem(Σ), called the vertical
(or fundamental) vector field associated to ξ , whose value at h ∈ Riem(Σ) is just the
infinitesimal change in h generated by ξ , that is,

Vξ (h) = −Lξ h, (7)

where Lξ denoted the Lie derivative with respect to ξ . Hence, for each h ∈ Riem(Σ),
the map V (h) : ξ �→ Vξ (h) is an anti-Lie homomorphism (the ‘anti’ being due to the
fact that we have a right action of Diff(Σ) on Riem(Σ)), that is [Vξ , Vη] = −V[ξ,η],
if the Lie structure on diffF(Σ) is that of ordinary commutators of vector fields. The
kernel of the map V (h) : ξ �→ Vξ (h) consists of the finite-dimensional subspace
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of Killing fields on (Σ, h). The vertical vectors at h ∈ Riem(Σ) therefore form a
linear subspace Verth ⊂ ThRiem(Σ), isomorphic to the vector fields on Σ modulo
the Killing fields on (Σ, h). It is a closed subspace due to the fact that the operator
ξ �→ Lξ h is overdetermined elliptic (cf. [11], Appendices G-I).

The family of ultralocal ‘metrics’ on Riem(Σ) is given by

G(α,λ)(k, �) =
∫

Σ

d3x α
√

det(h)
(

habhcd kac�bd − λ (habkab)(h
cd�cd)

)
, (8)

for each k, � ∈ ThRiem(Σ). Here α is a positive real-valued function on Σ and λ a
real number. An almost trivial but important observation is that Diff(Σ) is an isometry
group with respect to all G(α,λ). The ‘metric’ picked by GR through the bilinear term
in the constraint (2a) corresponds to λ = 1. The positive real-valued function α is not
fixed and corresponds to the free choice of a lapse-function. In what follows we shall
focus attention to α = 1.

The pointwise bilinear form (k, �) �→ (h⊗h)(k, �)−λTrh(k)Trh(�) in the integrand
of (8) defines a symmetric bilinear form on the six-dimensional space of symmetric
tensors which is positive definite for λ < 1/3, of signature (1, 5) for λ > 1/3, and
degenerate of signature (0, 5) for λ = 1/3. It defines a metric on the homogeneous
space GL(3)/O(3), where the latter may be identified with the space of euclidean
metrics on a three-dimensional vector space. Parametrising it by hab, we have

Gλ = Gab cd
λ dhab ⊗ dhcd = −εdτ ⊗ dτ + τ 2

c2 Tr(r−1dr ⊗ r−1dr), (9a)

where

rab := [det(h)]−1/3hab, τ :=c [det(h)]1/4, c2 :=16|λ − 1/3|, ε=sign(λ − 1/3),

(9b)

and

Gab cd
λ = 1

2

√
det(h)

(
hachbd + had hbc − 2λhabhcd

)
. (9c)

This is a 1+5-dimensional warped-product geometry in the standard form of ‘cos-
mological’ models (Lorentzian for λ > 1/3), here corresponding to the 1+5 decom-
position GL(3)/O(3) ∼= R × SL(3)/SO(3) with scale factor τ/c and homogeneous
Riemannian metric on five-dimensional ’space’ SL(3)/SO(3), given by Tr(r−1dr ⊗
r−1dr) = racrbd drab ⊗ drcd . τ = 0 is a genuine ‘spacelike’ (‘cosmological’) cur-
vature singularity. An early discussion of this finite-dimensional geometry was given
by DeWitt [16]. We stress that the Lorentzian nature of the Wheeler–DeWitt metric in
GR (i.e. for λ = 1) has nothing to do with the Lorentzian nature of spacetime, as we
will see below from the statement of Theorem 1 and formulae (33, 34); rather, it can
be related to the attractivity of gravity [38].
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The Superspace of geometrodynamics 791

As for the infinite-dimensional geometry of Riem(Σ), we remark that an element
h of Riem(Σ) is a section in T ∗Σ ⊗ T ∗Σ and so is an element of ThRiem(Σ).
The latter has the fibre-metric (9). It is sometimes useful to use h (for index rais-
ing) in order to identify ThRiem(Σ) with sections in T Σ ⊗ T ∗Σ ∼= End(T Σ),
also because the latter has a natural structure as associative- (and hence also Lie-)
algebra. Then the inner product (8) for α = 1 just reads (here and below dµ(h) =√

det(h) d3x)

Gλ(k, �) =
∫

Σ

dµ(h) (Tr(k · �) − λ Tr(k)Tr(�)) . (10)

For λ = 0 the infinite-dimensional geometry of Riem(Σ) has been studied in [27].
They showed that all curvature components involving one or more pure-trace direc-
tions vanish and that the curvature tensor for the trace-free directions is given by (now
making use of the natural Lie-algebra structure of T Σ ⊗ T ∗Σ)

R(k, �)m = −1

4
[[k, �], m] . (11)

In particular, this implies that the sectional curvatures involving pure trace direc-
tions vanish and that the sectional curvatures for trace-free directions k, � are non-
positive:

K (k, �) = −1

4

∫

Σ

dµ(h) Tr (k · R(k, �)�)

= −1

4

∫

Σ

dµ(h) Tr ([k, �] · [�, k]) ≤ 0 . (12)

Similar results hold for other values of λ, though some positivity statements cease
to hold for λ > 1/3. We keep the generality in the value of λ for the moment in order
to show that the value λ = 1 picked by GR is quite special. Since, as already stated,
all elements of DiffF(Σ) are isometries of Gλ, it is natural to try to define a bundle
connection on Riem(Σ) by taking the horizontal subspace Horλh at each ThRiem(Σ)

to be the Gλ–orthogonal complement to Verth , as suggested in [35]. From (8) one sees
that k ∈ ThRiem(Σ) is orthogonal to all Lξ h iff

(Oλk)a := −∇b(kab − λhabhcdkcd) = 0 . (13)

But note that orthogonality does not imply transversality if the metric is indefinite,
as for λ = 1. In that case the intersection Verth ∩ Horλh may well be non trivial, which
implies that there is no well defined projection map

horλh : ThRiem(Σ) → Horλh . (14)

The definition of this map would be as follows: Let k ∈ ThRiem(Σ), find a vector
field ξ on Σ such that k − Vξ is horizontal. Then Vξ is the (λ dependent) vertical
component of k and the map k �→ k − Vξ is the (λ dependent) horizontal projection
(14). When does that work? Well, according to (13), the condition for k − Vξ to be
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horizontal for given k is equivalent to the following differential equation for ξ :

Dλξ := (δd + 2(1 − λ)dδ − 2Ric) ξ = Ohk. (15)

Here we regarded ξ as one-form and d, δ denote the standard exterior differential
and co-differential (δξ = −∇aξa) respectively. Moreover, Ric is the endomorphism
on one-forms induced by the Ricci tensor (ξa �→ Rb

aξb). Note that the right-hand side
of (15) is L2-orthogonal for all k to precisely the Killing fields.

The singular nature of the GR value λ = 1 is now seen from writing down the
principal symbol of the operator Dλ on the left-hand side of (15),

σλ(ζ )a
b = ‖ζ‖

(
δa

b + (1 − 2λ)
ζ aζb

‖ζ‖
)

, (16)

whose determinant is ‖ξ‖62(1−λ). Hence σλ is positive definite for λ < 1 and indef-
inite but still an isomorphism for λ > 1. This means that Dλ is elliptic for λ �= 1
(strongly elliptic4 for λ < 1) but fails to be elliptic for precisely the GR value λ = 1.
This implies the possibility for the kernel of Dλ=1 to become infinite dimensional.

The last remark has a direct implication as regards the intersection of the hori-
zontal and vertical subspaces. Recall that solutions ξ to Dλξ = 0 modulo Killing
fields (which always solve this equation) correspond faithfully to vertical vectors at
h ∈ Riem(Σ) (via ξ �→ Vξ (h)) which are also horizontal. Since Killing vectors span
at most a finite dimensional space, an infinite dimensional intersection Verth ∩ Horλh
would be implied by an infinite dimensional kernel of D1.

That this possibility for λ = 1 is actually realised for any Σ is easy to see: Take
a metric h on Σ that is flat in an open region U ⊂ Σ , and consider k ∈ ThRiem(Σ)

of the form kab = 2∇a∇bφ, where φ is a real-valued function on Σ whose support is
contained in U . Then k is vertical since k = Lξ h for ξ = grad φ (a non-zero gradient
vector-field is never Killing on a compact Σ), and also horizontal since k satisfies
(13). Such ξ clearly span an infinite-dimensional subspace in the kernel of D1.

On the other hand, for λ = 1 there are also always open sets of h ∈ Riem(Σ) (and
of [h] ∈ SF(Σ)) for which the kernel of D1 is trivial (the kernel clearly depends only
on the diffeomorphism class [h] of h). For example, consider metrics with negative
definite Ricci tensor, which exist for any closed Σ [30]. (Note that Ricci-negative
geometries never allow for non-trivial Killing fields.) Then it is clear from the defi-
nition of Dλ that it is a positive-definite operator for λ ≤ 1. Hence the intersection
Verth ∩ Horλh is trivial.

In the latter case it is interesting to observe that Gλ restricted to Verth (h Ricci
negative) is positive definite, since

Gλ

(
Vξ (h), Vξ (h)

) = 2
∫

Σ

dµ(h) h(ξ, Dλξ). (17)

4 We follow the terminology of Appendix I in [11].
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The Superspace of geometrodynamics 793

This means that Gλ restricted to the orthogonal complement, Horλh , contains infi-
nitely many negative and infinitely may positive directions and the same (∞,∞) –
signature is then directly inherited by T[h]SF(Σ) for any Ricci-negative geometry [h].

Far less generic but still interesting examples for trivial intersections Verth ∩ Horλh
in case λ = 1 are given by Einstein metrics with positive Einstein constants. Since
this condition implies constant positive sectional curvature, such metrics only exist
on manifolds Σ with finite fundamental group, so that Σ must be a spherical space
form S3/G, where G is a finite subgroup of SO(4) acting freely on S3. Also note that
the subspace in SF(Σ) of Einstein geometries is finite dimensional. Now, any solution
ξ to D1ξ = 0 must be divergenceless (take the co-differential δ of this equation)
and hence Killing. The last statement follows without computation from the fact that
D1ξ = 0 is nothing but the condition that Lξ h is G1–orthogonal to all vertical vectors
in ThRiem(Σ), which for divergenceless ξ (traceless Lξ h) is equivalent to G0–orthog-
onality, but then positive definiteness of G0 and G0(Lξ h, Lξ h) = 0 immediately imply
Lξ h = 0. This shows the triviality of Verth ∩ Horλh .

The foregoing shows that G1 indeed defines a metric at T[h]SF(Σ) for Ricci-positive
Einstein geometries [h]. How does the signature of this metric compare to the signa-
ture (∞,∞) at Ricci-negative geometries? The answer is surprising: Take, e.g., for
[h] the round geometry on Σ = S3. Then it can be shown that G1 defines a Lorentz
geometry on T[h]SF(Σ), that is with signature (1,∞), containing exactly one negative
direction [35]. This means that the signature of the metric defined at various points in
Superspace varies strongly, with intermediate transition regions where no metric can
be defined at all due to signature change. Figure 1 is an attempt to picture this situation.

4 Intermezzo: GR as simplest representation of symmetry

It is well known that the field equations of GR have certain uniqueness properties and
can accordingly be ‘deduced’ under suitable hypotheses involving a symmetry princi-
ple (diffeomorphism invariance), the equivalence principle, and some apparently mild
technical hypotheses. More precisely, the equivalence principle suggests to only take
the metric as dynamical variable [76] representing the gravitational field (to which mat-
ter then couples universally), whereas diffeomorphism invariance, derivability from
an invariant Lagrangian (alternatively: local energy-momentum conservation in the
sense of covariant divergencelessness), dependence of the equations on the metric up
to at most second derivatives, and, finally, four-dimensionality lead uniquely to the
left-hand side of Einstein’s equation, including a possibly non-vanishing cosmologi-
cal constant [54]. Here we will review how this ‘deduction’ works in the Hamiltonian
setting on phase space T ∗Riem(Σ), which goes back to [40,41,51,74].

4.1 3 + 1 decomposition

Since the 3 + 1 split of Einstein’s equations has already been introduced in Claus
Kiefer’s contribution I can be brief on that point. The basic idea is to first imagine
a spacetime (M, g) being given, where topologically M is a product R × Σ . Space-
time is then considered as the trajectory (history) of space in the following way: Let
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794 D. Giulini

Fig. 1 The rectangle depicts the space Riem(Σ) which is fibred by the orbits of DiffF(Σ) (curved vertical
lines). The metric G1 on Riem(Σ) is such that as we move along Riem(Σ) transversal to the fibres the
“light-cones” tilt relative to the fibre directions. The process here shows a transition at [h′] where some
fibre directions are lightlike and no metric can be defined in T[h′]SF(Σ), whereas they are timelike at [h]
and spacelike at [h′′]. The parallelogram at h merely indicates the horizontal and vertical components of a
vector in ThRiem(Σ)

Emb(Σ,M) denote the space of smooth spacelike embeddings Σ → M . We consider
a curve R � t → Et ∈ Emb(Σ,M) corresponding to a one-parameter family of
smooth embeddings with spacelike images. We assume the images Et (Σ) =: Et ⊂ M
to be mutually disjoint and moreover that Ê : R × Σ → M , (t, p) �→ Et (p), is
an embedding (it is sometimes found convenient to relax this condition, but this is
of no importance here). The Lorentz manifold (R × Σ,E∗g) may now be taken as
(E–dependent) representative of M (or at least some open part of it) on which the
leaves of the above foliation simply correspond to the t = const. hypersurfaces. Let
n denote a field of normalised timelike vectors normal to these leaves. n is unique up
to orientation, so that the choice of n amounts to picking a ‘future direction’.

The tangent vector dEt/dt |t=0 at E0 ∈ Emb(Σ,M) corresponds to a vector field
over E0 (i.e. section in T (M)|E0 ), given by

dEt (p)

dt

∣
∣
∣
∣
t=0

=: ∂

∂t

∣
∣
∣
∣
E0(p)

= αn + β (18)

with components (α, β) = (lapse, shift) normal and tangential to Σ0 ⊂ M .
Conversely, each vector field V on M defines a vector field X (V ) on Emb(Σ,M),

corresponding to the left action of Diff(M) on Emb(Σ,M) by composition. In local
coordinates yµ on M and xk on Σ it can be written as
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X (V ) =
∫

Σ

d3x V µ(y(x))
δ

δyµ(x)
. (19)

One easily verifies that X : V �→ X (V ) is a Lie homomorphism:

[X (V ), X (W )] = X ([V, W ]) . (20)

In this sense, the Lie algebra of the four-dimensional diffeomorphism group is
implemented on phase space of any generally covariant theory whose phase space
includes the embedding variables [44] (so-called ‘parametrised theories’).

Alternatively, decomposing (19) into normal and tangential components with
respect to the leaves of the embedding at which the tangent-vector field to Emb(Σ,M)

is evaluated, yields an embedding-dependent parametrisation of X (V ) in terms of
(α, β),

X (α, β) =
∫

Σ

d3x
(
α(x)nµ[y](x) + βm(x)∂m yµ(x)

) δ

δyµ(x)
, (21)

where y in square brackets indicates the functional dependence of n on the embedding.
The functional derivatives of n with respect to y can be computed (see the Appendix
of [74]) and the commutator of deformation generators then follows to be,

[X (α1, β1) , X (α2, β2)] = − X (α′, β ′), (22)

where

α′ = β1(α2) − β2(α1), (23a)

β ′ = [β1, β2] + σα1 gradh(α2) − σα2gradh (α1). (23b)

Here we left open whether spacetime M is Lorentzian (σ = 1) or Euclidean (σ = −1),
just in order to keep track how the signature of spacetime, (−σ,+,+,+), enters. Note
that the h-dependent gradient field for the scalar function α is given by gradh(α) =
(hab∂bα)∂a . The geometric idea behind (23) is summarised in Fig. 2.

4.2 Hamiltonian geometrodynamics

The idea of Hamiltonian geometrodynamics is to realise these relations in terms of
a Hamiltonian system on the phase space of physical fields. The most simple case is
that where the latter merely include the spatial metric h on Σ , so that the phase space
is the cotangent bundle T ∗Riem(Σ) over Riem(Σ). One then seeks a correspondence

(α, β) �→ (
H(α, β) : T ∗Riem(Σ) → R

)
, (24)
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Fig. 2 An (infinitesimal)
hypersurface deformation with
parameters (α1, β1) that maps
Σ �→ Σ1, followed by one with
parameters (α2, β2) that maps
Σ1 �→ Σ12 differs by one with
parameters (α′, β ′) given by
(23) from that in which the maps
with the same parameters are
composed in the opposite order

where

H(α, β)[h, π ] :=
∫

Σ

d3x
(
α(x)H[h, π ](x) + hab(x)βa(x)Db[h, π ](x)

)
, (25)

with integrands H[h, π ](x) and Db[h, π ](x) yet to be determined. H should be
regarded as distribution (here the test functions are α and βa) with values in real-
valued functions on T ∗Riem(Σ). Now, the essential requirement is that the Poisson
brackets between the H(α, β) are, up to a minus sign,5 as in (23):

{H(α1, β1) , H(α2, β2)} = H(α′, β ′). (26)

Once the distribution H satisfying (26) has been found, we can turn around the argu-
ments given above and recover the action of the Lie algebra of four-dimensional
diffeomorphism on the extended phase space including embedding variables [45].
That such an extension is indeed necessary has been shown in [64], where obstruc-
tions against the implementation of the action of the Lie algebra of four-dimensional
diffeomorphisms have been identified in case the dynamical fields include non-scalar
ones.

4.3 Why constraints

From this follows a remarkable uniqueness result. Before stating it with all its hypoth-
eses, we show why the constraints H[h, π ] = 0 and Db[h, π ] = 0 must be imposed.

Consider the set of smooth real-valued functions on phase space, F : T ∗
Riem(Σ) → R. They are acted upon by all H(α, β) via Poisson bracketing:

5 Due to the standard convention that the Hamiltonian action being defined as a left action, whereas the
Lie bracket on a group is defined by the commutator of left-invariant vector fields which generate right
translations.
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F �→ {F, H(α, β)}. This defines a map from (α, β) into the derivations of phase-space
functions. We require this map to also respect the commutation relation (26), that is,
we require

{{F, H(α1, β1)} , H(α2, β2)} − {{F, H(α2, β2)} , H(α1, β1)}={F, H} (α′, β ′) .

(27)

The subtle point to be observed here is the following: Up to now the parameters (α1, β1)

and (α2, β2) were considered as given functions of x ∈ Σ , independent of the fields
h(x) and π(x), i.e. independent of the point of phase space. However, from (23b) we
see that β ′(x) does depend on h(x). This dependence may not give rise to extra terms
∝ {F, α′} in the Poisson bracket, for, otherwise, the extra terms would prevent the map
(α, β) �→ {−, H(α, β)} from being a homomorphism from the algebraic structure of
hypersurface deformations into the derivations of phase-space functions. This is nec-
essary in order to interpret {−, H(α, β)} as a generator (on phase-space functions)
of a spacetime evolution corresponding to a normal lapse α and tangential shift β. In
other words, the evolution of observables from an initial hypersurface Σi to a final
hypersurface Σ f must be independent of the intermediate foliation (‘integrability’ or
‘path independence’ [40,41,74]). Therefore we placed the parameters (α′, β ′) outside
the Poisson bracket on the right-hand side of (27), to indicate that no differentiation
with respect to h, π should act on them.

To see that this requirement implies the constraints, rewrite the left-hand side of
(27) in the form

{{F, H(α1, β1)} , H(α2, β2)} − {{F, H(α2, β2)} , H(α1, β1)}
= {F, {H(α1, β1), H(α2, β2)}}
= {

F, H(α′, β ′)
}

= {F, H} (α′, β ′) + H
({F, α′} , {F, β ′}) , (28)

where the first equality follows from the Jacobi identity, the second from (26), and the
third from the Leibniz rule. Hence the requirement (27) is equivalent to

H
({F, α′} , {F, β ′}) = 0 (29)

for all phase-space functions F to be considered and all α′, β ′ of the form (23). Since
only β ′ depends on phase space, more precisely on h, this implies the vanishing of the
phase-space functions H

(
0, {F, β ′}) for all F and all β ′ of the form (23b). This can

be shown to imply H(0, β) = 0, i.e. D[h, π ] = 0. Now, in turn, for this to be pre-

served under all evolutions we need
{

H(α, β̃), H(0, β)
}

= 0, and hence in particular

{H(α, 0), H(0, β)} = 0 for all α, β, which implies H(α, 0) = 0, i.e. H[h, π ] = 0.
So we see that the constraints indeed follow.

Sometimes the constraints H(α, β)=0 are split into the Hamiltonian (or scalar)
constraints, H(α, 0)=0, and the diffeomorphisms (or vector) constraints, H(0, β)=0.
The relations (26) with (23) then show that the vector constraints form a Lie-subalge-
bra which, because of {H(0, β), H(α, 0)} = H (β(α), 0) �= H(0, β ′), is not an ideal.
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This means that the Hamiltonian vector fields for the scalar constraints are not tangent
to the surface of vanishing vector constraints, except where it intersects the surface
of vanishing scalar constraints. This implies that the scalar constraints do not act on
the solution space for the vector constraints, so that one simply cannot first reduce
the vector constraints and then, on the solutions of that, search for solutions to the
scalar constraints. Also, it is sometimes argued that the scalar constraints should not
be regarded as generators of gauge transformations but rather as generators of phys-
ically meaningful motions whose effect is to change the physical state in a fashion
that is, in principle, observable. See [52] and also [7] and Sect. 2.3 of Claus Kiefer’s
contribution for a recent revival of that discussion. However, it seems inconsistent to
me to simultaneously assume 1) physical states to always satisfy the scalar constraints
and 2) physical observables to exist which do not Poisson commute with the scalar
constraints: The Hamiltonian vector field corresponding to such an ‘observable’ will
not be tangent to the surface of vanishing scalar constraints and hence will transform
physical to unphysical states upon being actually measured.

4.4 Uniqueness of Einstein’s geometrodynamics

It is sometimes stated that the relations (26) together with (23) determine the function
H(α, β) : T ∗Riem(Σ) → R, i.e. the integrands H[h, π ] and D[h, π ], uniquely up
to two free parameters, which may be identified with the gravitational and the cos-
mological constants. This is a mathematical overstatement if read literally, since the
result can only be shown if certain additional assumptions are made concerning the
action of H(α, β) on the basic variables h and π .

The first such assumption concerns the intended (‘semantic’ or ‘physical’) meaning
of H(0, β), namely that the action of H(0, β)} on h or π is that of an infinitesimal
spatial diffeomorphism of Σ . Hence it should be the spatial Lie derivative, Lβ , applied
to h or π . It then follows from the general Hamiltonian theory that H(0, β) is given by
the momentum map that maps the vector field β (viewed as element of the Lie algebra
of the group of spatial diffeomorphisms) into the function on phase space given by the
contraction of the momentum with the β-induced vector field h → Lβh on Riem(Σ):

H(0, β) =
∫

Σ

d3x πab(Lβh)ab = −2
∫

Σ

d3x(∇aπab)hbcβ
c . (30)

Comparison with (25) yields

Db[h, π ] = −2∇aπab. (31)

The second assumption concerns the intended (‘semantic’ or ‘physical’) meaning
of H(α, 0), namely that {−, H(α, 0)} acting on h or π is that of an infinitesimal
‘timelike’ diffeomorphism of M normal to the leaves Et (Σ). If M were given, it is
easy to prove that we would have Lαnh = 2α K , where n is the timelike field of
normals to the leaves Et (Σ) and K is their extrinsic curvature. Hence one requires
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{h, H(α, 0)} = 2α K . (32)

Note that both sides are symmetric covariant tensor fields over Σ . The important fact
to be observed here is that α appears without differentiation. This means that H(α, 0)

is an ultralocal functional of π , which is further assumed to be a polynomial. (Note
that we do not assume any relation between π and K at this point).

Quite generally, we wish to stress the importance of such ’semantic’ assumptions
concerning the intended meanings of symmetry operations when it comes to ‘deri-
vations’ of physical laws from ‘symmetry principles’. Such derivations often suffer
from the same sort of overstatement that tends to give the impression that the mere
requirement that some group G acts as symmetries alone distinguishes some dynam-
ical laws from others. Often, however, additional assumptions are made that severely
restrict the form in which G is allowed to act. For example, in field theory, the require-
ment of locality often enters decisively, like in the statement that Maxwell’s vacuum
equations are Poincaré- but not Galilei invariant. In fact, without locality the Galilei
group, too, is a symmetry group of vacuum electrodynamics [29]. Coming back to the
case at hand, I do not know of a uniqueness result that does not make the assumptions
concerning the spacetime interpretation of the generators H(α, β). Compare also the
related discussion in [66,67].

The uniqueness result for Einstein’s equation, which in its space-time form is spelled
out in Lovelock’s theorem [54] already mentioned above, now takes the following form
in Geometrodynamics [51]:

Theorem 1 In four spacetime dimensions (Lorentzian forσ=1, Euclidean forσ=−1),
the most general functional (25) satisfying (26) with (23), subject to the conditions
discussed above, is given by (31) and the two-parameter (κ,�) family

H[h, π ] = σ (2κ) Gab cdπabπcd − (2κ)−1
√

det(h) (R(h) − �) , (33)

where

Gab cd = 1

2
√

det(h)

(
hachbd + had hbc − 1

2
habhcd

)
, (34)

and R(h) is the Ricci scalar of (h,Σ). Note that (34) is just the “contravariant ver-
sion” of the metric (9c) for λ = 1, i.e., Gab nm Gnm cd = 1

2 (δc
aδd

b + δd
a δc

b).

The Hamiltonian evolution so obtained is precisely that of General Relativity
(without matter) with gravitational constant κ = 8πG/c4 and cosmological constant
�. The proof of the theorem is given in [51], which improves on earlier
versions [41,74] in that the latter assumes in addition that H[h, π ] be an even func-
tion of π , corresponding to the requirement of time reversibility of the generated
evolution. This was overcome in [51] by the clever move to write the condition set
by {H(α1, 0), H(α2, 0)} = H(0, β ′) (the right-hand side being already known) on
H(α, 0) in terms of the corresponding Lagrangian functional L , which is then imme-
diately seen to turn into a condition which is linear in L , so that terms with even
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powers in velocity decouple form those with odd powers. However, a small topolog-
ical subtlety remains that is neglected in all these references and which potentially
introduces a little more ambiguity that encoded in the two parameters κ and �, though
its significance is more in the quantum theory. To see this recall that we can always
perform a canonical transformation of the form

π �→ π ′ := π + � (35)

where � is a closed one-form on Riem(Σ). The latter condition ensures that all
Poisson brackets remain the same if π is replaced with π ′. Since Riem(Σ) is an open
positive convex cone in a vector space and hence contractible, it is immediate that
� = dθ for some function θ : Riem(Σ) → R. However, π and π ′ must satisfy the
diffeomorphism constraint, which is equivalent to saying that the kernel of π (con-
sidered as one-form on Riem(Σ)) contains the vertical vector fields, which implies
that �, too, must annihilate all Vξ so that θ is constant on each connected compo-
nent of the DiffF(Σ) orbit in Riem(Σ). But unless the DiffF(Σ) orbits in Riem(Σ)

are connected, this does not mean that θ is the pull back of a function on Super-
space, as assumed in [51]. We can only conclude that � is the pull back of a closed
but not necessarily exact one-form on Superspace. Hence there is an analogue of the
Bohm-Aharonov-like ambiguity that one always encounters if the configuration space
is not simply connected. Whether this is the case depends in a determinate fashion on
the topology of Σ : One has, due to the contractibility of Riem(Σ),

πn (Riem(Σ)/DiffF(Σ)) ∼= πn−1 (DiffF(Σ)) (n ≥ 1) . (36)

For n = 1 the right hand side is

π0 (DiffF(Σ)) := DiffF(Σ)/Diff0
F(Σ) =: MCGF(Σ) (37)

where Diff0
F(Σ) is the identity component of DiffF(Σ) and where we introduced the

name MCGF(Σ) (Mapping-Class Group for Frame fixing diffeomorphisms) for the
quotient group of components.

In view of the uniqueness result above, one might wonder what goes wrong when
using (the contravariant version of) the metric Gλ for λ �= 1 in (34). The answer is
that it would spoil (26). More precisely, it would contradict {H(α1, 0) , H(α2, 0)} =
H(0, α1∇α2 −α2∇α1) due to an extra term ∝ (habπ

ab)2 in H[h, π ], unless the addi-
tional constraint habπ

ab = 0 were imposed, which is equivalent to Trh(K ) = 0 and
hence to the condition that only maximal slices are allowed [35]. But this is clearly
unacceptable (cf. Sect.6 of [8]).

As a final comment about uniqueness of representations of (26) we mention the
apparently larger ambiguity—labelled by an additional C-valued parameter, the
Barbero-Immirzi parameter—that one gets if one uses connection variables rather
than metric variables (cf. [6,42], Sect. 4.2.2 of [75], and Sect. 4.3.1 of [48]). However,
in this case one does not represent (26) but a semi-direct product of it with the Lie
algebra of SU (2) gauge transformations, so that after taking the quotient with respect
to the latter (which form an ideal) our original (26) is represented non locally. Also,
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unless the Barbero-Immirzi parameter takes the very special values ±i (for Lorentz-
ian signature; ±1 for Euclidean signature) the connection variable does not admit an
interpretation as a space-time gauge field restricted to spacelike hypersurfaces (cf.
[42,67]). For example, the holonomy of a spacelike curve γ varies with the choice
of the spacelike hypersurface containing γ , which would be impossible if the spa-
tial connection were the restriction of a space-time connection [67]. Accordingly, the
dynamics generated by the constraints does then not admit the interpretation of being
induced by appropriately moving a hypersurface through a spacetime with fixed geo-
metric structures on it. Consequently, the argument provided here for why one should
require (26) in the first place does, strictly speaking, not seem to apply in case of con-
nection variables. It is therefore presently unclear to me on what set of assumptions a
uniqueness result could be based in this case.

5 Topology of configuration space

Much of the global topology of SF(Σ) is encoded in its homotopy groups, which, in
turn are given by those of DiffF(Σ) according to (36). Their structures were investi-
gated in [33,36,83]. Early references as to their possible relevance in quantum gravity
are [28,43,69,71].

We start by remarking that topological invariants of SF(Σ) are also topological
invariants of Σ , which need not be homotopy invariant of Σ even if they are ho-
motopy invariants of SF(Σ). This is, e.g., the case for the mapping-class group of
homeomorphisms [55] and hence (in 3 dimensions) also for the mapping-class group
MCGF(Σ). Remarkably, this means that we may distinguish homotopy equivalent but
non homeomorphic three-manifolds by looking at homotopy invariants of their associ-
ated
Superspaces. Examples for this are given by certain types of lens spaces. First recall the
definition of lens spaces L(p, q) in 3 dimensions: L(p, q) = S3/∼, where (p, q) is a
pair of positive coprime integers with p > 1, S3 = {(z1, z2) ∈ C

2 | |z1|2 +|z2|2 = 1},
and (z1, z2) ∼ (z′

1, z′
2) ⇔ z′

1 = exp(2π i/p)z1, and z′
2 = exp(2π i q/p)z2. One way

to picture them is to take a solid ball in R
3 and identify each point on the upper hemi-

sphere with a points on the lower hemisphere after a rotation by 2πq/p about the
vertical symmetry axis. (Usually one depicts the ball in a way in which it is slightly
squashed along the vertical axis so that the equator develops a sharp edge and the whole
body looks like a lens; see e.g. Fig. in [68].) In this way each set of p equidistant points
on the equator is identified to a single point. The fundamental group of L(p, q) is Zp,
independent of q, and the higher homotopy groups are those of its universal cover, S3.
Moreover, for connected closed orientable three-manifolds the homology and coho-
mology groups are also determined by the fundamental group in an easy fashion: If
A denotes the operation of abelianisation of a group, F the operation of taking the
free part of a finitely generated abelian group, then the first four (zeroth to third, the
only non-trivial ones) homology and cohomology groups are respectively given by
H∗ = (Z, Aπ1, F Aπ1, Z) and H∗ = (Z, F Aπ1, Aπ1, Z) respectively. Hence, if taken
of L(p, q), all these standard invariants are sensitive only to p. However, it is known
that L(p, q) and L(p, q ′) are
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1. homotopy equivalent iff qq ′ = ±n2 (mod p) for some integer n,
2. homeomorphic iff (all four possibilities) q ′ = ±q±1 (mod p), and
3. orientation-preserving homeomorphic iff q ′ = q±1 (mod p).

The first statement is Theorem 10 in [82] and the second and third statement follow,
e.g., from the like combinatorial classification of lens spaces [65] together with the
validity of the ‘Hauptvermutung’ (the equivalence of the combinatorial and topo-
logical classifications) in 3 dimensions [60]. So, for example, L(15, 1) is homotopy
equivalent but not homeomorphic to L(15, 4). On the other hand, it is known that
the mapping-class group MCGF(Σ) for L(p, q) is Z × Z if q2 = 1 (mod p) with
q �= ±1 (mod p), which applies to p = 15 and q = 4, and that in the remaining cases
for p > 2 it is just Z (see Table IV on p. 591 of [83]). Hence MCGF(Σ) ∼= Z × Z

for Σ = L(15, 4) and MCGF(Σ) ∼= Z for Σ = L(15, 1), even though L(15, 1) and
L(15, 4) are homotopy equivalent!

Quite generally it turns out that Superspace stores much information about the
topology of the underlying three-manifold Σ . This can be seen from the table in
Fig. 3, which we reproduced form [32], and where properties of certain prime man-
ifolds (see below for an explanation of ‘prime’) are listed. There is one interesting
observation from that list which we shall mention right away: From gauge theories it
is known that there is a relation between topological invariants of the classical config-
uration space and certain features of the corresponding quantum-field theory [46], in
particular the emergence of certain anomalies which represent non-trivial topological
invariants [1]. By analogy one could conjecture similar relations to hold quantum grav-
ity. An interesting question is then whether there are preferred manifolds Σ for which
all these invariants are trivial. From those represented on the table there is indeed a
unique pair of manifolds for which this is the case, namely the three-sphere and the
three-dimensional real projective space. To understand more of the information col-
lected in the table we have to say more about general three-manifolds.

Of particular interest is the fundamental group of Superspace. Experience with
ordinary quantum mechanics (cf. [34] and references therein) already suggests that
its classes of inequivalent irreducible unitary representations correspond to a super-
selection structure which here might serve as fingerprint of the topology of Σ in the
quantum theory. The sectors might, e.g., correspond to various statistics (in the pres-
ence of diffeomorphic primes) that preserve or violate a naively expected spin-statistics
correlation [3,2,17,18] (see also below).

5.1 General three-manifolds and specific examples

The way to understand general three-manifolds is by cutting them along certain embed-
ded two manifolds so that the remaining pieces are simpler in an appropriate sense.
Here we shall only consider those simplifications that are achieved by cutting along
embedded two-spheres. (Further decompositions by cutting along two-tori provide fur-
ther simplifications, but these are not directly relevant here.) The two-spheres should
be ‘essential’ and ‘splitting’. An essential two-sphere is one which does not bound
a three-ball and a splitting two-sphere is one whose complement has two (rather
than just one) connected components. Figure 4 is intended to visualise the analogues
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Fig. 3 This table, taken from [32], lists various properties of certain prime three-manifolds. The manifolds
are grouped into those of finite fundamental group, which are of the form S3/G, the exceptional one,
S1 × S2, which is prime but not irreducible (π2(S1 × S2) = Z), those six which can carry a flat metric
and which are of the form R

3/G, and so-called Haken manifolds (sufficiently large K (π, 1) primes). For
the lens spaces q1 stands for q = ±1, q2 for q �= ±1 and q2 = 1, q3 for q2 = −1, and q4 for the
remaining cases, where all equalities are taken mod p. The third and fourth column list spinoriality and
chirality, the last three columns the homotopy groups of their corresponding Superspace. We refer to [32]
for the meanings of the other columns

of these notions in two dimensions. Given a closed three-manifold Σ , consider the
following process: Cut it along an essential splitting two-sphere and cap off the two-
sphere boundary of each remaining component by a three-disk. Now repeat the pro-
cess for each of the remaining closed three-manifolds. This process stops after a finite
number of steps [50] where the resulting components are uniquely determined up to
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B

A

B
C

A

C

Fig. 4 A Riemann surface of genus 3 with three pairs of embedded 1-spheres (circles) of type A, B, and C.
Type A is essential and splitting, type B is essential but not splitting, and type C is splitting but not essential.
Any third essential and splitting 1-sphere can be continuously deformed via embeddings into one of the
two drawn here

diffeomorphisms (orientation preserving if oriented manifolds are considered) and
permutation [58]; see [39] for a lucid discussion. The process stops at that stage at
which none of the remaining components, �1, . . . ,�n , allows for essential splitting
two-spheres, i.e. at which each �i is a prime manifold. A three-manifold is called
prime if each embedded two-sphere either bounds a three-disc or does not split; it is
called irreducible if each embedded two-sphere bounds a three-disc. In the latter case
the second homotopy group, π2, must be trivial, since, if it were not, the so-called
sphere theorem (see, e.g., [39]) ensured the existence of a non-trivial element of π2
which could be represented by an embedded two-sphere. Conversely, it follows from
the validity of the Poincaré conjecture that a trivial π2 implies irreducibility. Hence
irreducibility is equivalent to a trivial π2. There is precisely one non-irreducible prime
three-manifold, and that is the handle S1 × S2. Hence a three-manifold is prime iff it
is either a handle or if its π2 is trivial.

Given a general three-manifold Σ as connected sum of primes �1, . . . ,�n , there
is a general method to establish MCGF(Σ) in terms of the individual mapping-class
groups of the primes. The strategy is to look at the effect of elements in MCGF(Σ) on
the fundamental group of Σ . As Σ is the connected sum of primes, and as connected
sums in d dimensions are taken along d − 1 spheres which are simply-connected for
d ≥ 3, the fundamental group of a connected sum is the free product of the funda-
mental groups of the primes for d ≥ 3. The group MCGF(Σ) now naturally acts as
automorphisms of π(Σ) by simply taking the image of a based loop that represents
an element in π(Σ) by a based (same basepoint) diffeomorphism that represents the
class in MCGF(Σ). Hence there is a natural map

dF : MCGF(Σ) → Aut (π1(Σ)) . (38)

The known presentations6 of automorphism groups of free products in terms of pre-
sentations of the automorphisms of the individual factors and additional generators
(basically exchanging isomorphic factors and conjugating whole factors by individual
elements of others) can now be used to establish (finite) presentations of MCGF(Σ),

6 A (finite) presentation of a group is its characterisation in terms of (finitely many) generators and (finitely
many) relations.
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Fig. 5 The connected sum of two real projective spaces may be visualised by the shaded region obtained
from the spherical shell that is obtained by rotating the shaded annulus about the vertical symmetry axis as
indicated. Antipodal points on the outer two-sphere boundary S1, as well as on the inner two-sphere bound-
ary S2, are pairwise identified. This results in the connected sum of two RP3 along the connecting sphere
S. Due to the antipodal identifications, the two thick horizontal segments in the shaded region become a
single loop, showing that the entire space is fibred by circles over RP2. Remarkably, the handle S1 × S2,
which is prime, is a double cover of this reducible manifold

provided (finite) presentations for all prime factors are known.7 Here I wish to stress
that this situation would be more complicated if Diff(Σ) rather than DiffF(Σ) (or at
least the diffeomorphisms fixing a preferred point) had been considered; that is, had
we not made the transition from (1) to (4). Only for DiffF(Σ) (or the slightly larger
group of diffeomorphisms fixing the point) is it generally true that the mapping-class
group of a prime factor injects into the mapping-class group of the connected sum in
which it appears. For more on this, compare the discussion on p. 182-3 in [37]. Clearly,
one also needs to know which elements are in the kernel of the map (38). This will be
commented on below in connection with Fig 7.

5.2 The connected sum of two real-projective spaces

In some (in fact many) cases the map dF is an isomorphism. For example, this is
the case if Σ is the connected sum of two RP3 (Fig. 5), so that π1(Σ) is the free
product Z2 ∗ Z2, a presentation of which is 〈a, b | a2 = b2 = 1〉. For the auto-
morphisms we have Aut(Z2 ∗ Z2) ∼= Z2 ∗ Z2 = 〈E, S | E2 = S2 = 1〉, where
E : (a, b) → (b, a) and S : (a, b) → (a, aba−1). In this sense the infinite discrete
group Z2 ∗ Z2 is a quotient of the automorphism group of Superspace SF(Σ) for
Σ being the connected sum of two real projective spaces. It is therefore of interest
to study its unitary irreducible representations. This can be done directly in a rather
elementary fashion, or more systematically by a simple application of the method of
induced representations (Mackey theory) using the isomorphicity Z2 ∗ Z2 ∼= Z2 � Z

7 This presentation of the automorphism group of free products is originally due to Fouxe-Rabinovitch
[25,26]. Modern forms with corrections are given in [57] and [31].
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Fig. 6 The shown loops represent the generators a and b of the fundamental group Z2 ∗ Z2 = 〈a, b |
a2 = b2 = 1〉. The product loop c = ab is then seen to be one of the fibres mentioned in the caption of
the previous Figure. In terms of a and c we have the presentation 〈a, c | a2 = 1, aca−1 = c〉, showing the
isomorphicity Z2 ∗ Z2 ∼= Z2 � Z

(cf. caption to Fig. 6). The result is that, apart form the obvious four one-dimensional
ones, given by (E, S) �→ (±id,±id), there is a continuous set of mutually inequivalent
two-dimensional ones, given by

E �→
(

1 0
0 −1

)
, S �→

(
cos τ sin τ

sin τ − cos τ

)
, τ ∈ (0, π). (39)

Already in this most simple example of a non-trivial connected sum we have an
interesting structure in which the two ‘statistics sectors’ corresponding to the irreduc-
ible representations of the permutation subgroup (here just given by the Z2 subgroup
generated by E) get mixed by S, where the ‘mixing angle’ τ uniquely characterises
the representation. This behaviour can also be studied in more complicated exam-
ples [32,72]. For a more geometric understanding of the maps representing E and S,
see [37].

5.3 Spinoriality

I also wish to mention one very surprising observation that was made by Rafael Sorkin
and John Friedman in 1980 [28] and which has to do with the physical interpretation
of the elements in the kernel of the map (38), leading to the conclusion that pure
(i.e. without matter) quantum gravity should already contain states with half-integer
angular momenta. The reason being a purely topological one, depending entirely on
the topology of Σ . In fact, given the right topology of Σ , its one-point decompactif-
ication used in the context of asymptotically flat initial data will describe an isolated
system whose asymptotic (at spacelike infinity) symmetry group is not the ordinary
Poincaré group [10] but rather its double (= universal) cover. This gives an intriguing
answer to Wheeler’s quest to find a natural place for spin 1/2 in Einstein’s standard
geometrodynamics (cf. [59] Box 44.3).

I briefly recall that after introducing the concept of a ‘Geon’ (‘gravitational-
electromagnetic entity’) in 1955 [77], and inspired by the observation that electric
charge (in the sense of non-vanishing flux integrals of �F over closed two-dimensional
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Fig. 7 Both pictures show rotations parallel to spheres S1 and S2: On the left, a rotation of a prime manifold
in a connected sum parallel to the connecting sphere, on the right a rotation parallel to two meridian spheres
in a ‘handle’ S1 × S2. The support of the diffeomorphism is on the cylinder bound by S1 and S2. In either
case its effect is depicted by the two curves connecting the two spheres. The two-dimensional representation
given here is deceptive insofar, as in two dimensions the original and the mapped curves are not homotopic
(keeping their endpoints fixed), due to the one-sphere not being simply connected, whereas they are in three
(and higher) higher dimensions they are due to the higher-dimensional spheres being simply connected

surfaces) could be realised in Einstein-Maxwell theory without sources (‘charge with-
out charge’), Wheeler and collaborators turned to the Einstein–Weyl theory [13] and
tried to find a ‘neutrino analog of electric charge’ [49]. Though this last attempt failed,
the programme of ‘matter as geometry’ in the context of geometrodynamics, as out-
lined in the contributions to the anthology [78], survived in Wheeler’s thinking well
into the 1980s [81].

Back to the ‘spin without spin’ topologies, the elements of the kernel of (38) can be
pictured as rotation parallel to certain spheres, as depicted in Fig. 7. (In many—and
possibly all—cases the group generated by such maps actually exhaust the kernel;
compare Theorem. 1.5 in [56] and footnote 21 in [37]). The point we wish to focus
on here is that for some prime manifolds the diffeomorphism depicted on the left in
Fig. 7 is indeed not in the identity component of all diffeomorphisms that fix a frame
exterior to the outer (S2) two-sphere. Such manifolds are called spinorial. For each
prime it is known whether it is spinorial or not, and the easy-to-state but hard-to-prove
result is, that the only non-spinorial manifolds8 are the lens spaces L(p, q), the handle
S1 × S2, and connected sums amongst them. That these manifolds are not spinorial
is, in fact, very easy to visualise. Hence, given the proof of the ‘only’ part and of the
fact that a connected sum is spinorial iff it contains at least one spinorial prime, one
may summarise the situation by saying that the only non-spinorial manifolds are the
‘obvious’ ones.

Even though being a generic property in the sense just stated, spinoriality is gen-
erally hard to prove in dimensions three or greater. This is in marked contrast to two
dimensions, where the corresponding transformation shown in the left picture of Fig.7
acts non trivially on the fundamental group. Indeed, consider a base point outside
(below) S2 in the left picture in Fig. 7, then the rotation acts by conjugating each
of the 2g generators (a1, . . . , ag, b1, . . . , b2) that � adds to π1(Σ) by the element

8 We remind the reader that ‘manifold’ here stands for ‘three-dimensional closed orientable manifold’.
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Fig. 8 Fundamental domain for
the space S3/D∗

8 . Opposite
faces are identified after a
right-handed screw motion with
90◦ rotation, as indicated by the
coinciding labels for the edges
and vertices. The corresponding
space with a left-handed
identification is not
orientation-preserving
diffeomorphic to this one
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BA
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BA
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d

a

b

b

a

b

d

c

c

d

a

A

A

∏g
i=1 ai bi a

−1
i b−1

i , which is non-trivial in π1(Σ) if other primes exist or otherwise if
the point with the fixed frame is removed (as one may do, due to the restriction to
diffeomorphisms fixing that point).

An example of a spinorial manifold is the spherical space form S3/D∗
8 , where S3

is thought of as the sphere of unit quaternions and D∗
8 is the subgroup in the group

of unit quaternions given by the eight elements {±1,±i,± j,± k}. The coset space
S3/D∗

8 may be visualised as solid cube whose opposite faces are identified after a
90-degree rotation by either a right- or a left-handed screw motion; see Fig. 8. Draw-
ings of fundamental domains in form of (partially truncated) solid polyhedra with
suitable boundary identifications for spaces S3/G are given in [19]. Let us take the
basepoint ∞ ∈ S3/D∗

8 to be the centre of the cube in Fig. 8. The two generators, a
and b, of the fundamental group

π1(S3/D∗
8) ∼= D∗

8 = 〈a, b | a2 = b2 = (ab)2〉 (40)

are then represented by two of the three oriented straight segments connecting the
midpoints of opposite faces. The third corresponds to the product ab. A rotation of the
cube about its centre by any element of its crystallographic symmetry group defines
a diffeomorphism of S3/D∗

8 fixing ∞ since it is compatible with the boundary iden-
tification. It is not in the identity component of ∞-fixing diffeomorphisms since it
obviously acts non-trivially on the generators of the fundamental group. Clearly, each
such rigid rotation may be modified in an arbitrarily small neighbourhood of ∞ so as
to also fix the tangent space at this point. That S3/D∗

8 is spinorial means that in going
from the point-fixing to the frame-fixing diffeomorphisms one acquires more diffeo-
morphisms not connected to the identity. More precisely, the mapping-class group of
frame-fixing diffeomorphisms is a Z2-extension of the mapping-class group of merely
point-fixing diffeomorphisms. The generator of this extending Z2 is a full 360◦ rota-
tion parallel to two small concentric spheres centred at ∞. In this way, the spinoriality
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of S3/D∗
8 extends the crystallographic symmetry group O ⊂ SO(3) of the cube to its

double cover O∗ ⊂ SU (2) and one finally gets

MCGF(�) ∼= O∗ for � = S3/D∗
8 . (41)

This is precisely what one finds at the intersection of the 2nd row and 7th column of
the table in Fig. 3, with corresponding results for the other spherical space forms.

Coming back to the previous example of the connected sum of two (or more [32])
real projective spaces, we can make the following observation: First of all, real pro-
jective three-space is a non-spinorial prime. This is obvious once one visualises it
as a solid three-ball whose two-sphere boundary points are pairwise identified in an
antipodal fashion, since this identification is compatible with a rigid rotation. A full
rotation about the, say, centre-point of the ball may therefore be continuously undone
by a rigid rotation outside a small ball about the centre, suitably ‘bumped off’ towards
the centre. Second, as we have seen above, the irreducible representations of the
mapping-class group of the connected sum contains both statistics sectors indepen-
dently for one-dimensional representations and in a mixed form for the continuum of
two-dimensional irreducible representations. This already shows [2] that there is no
general kinematical spin-statistics relation as in other non-linear theories [21,70]. Such
a relation may at best be re-introduced for some manifolds by restricting the way in
which states are constructed, e.g., via the sum-over-histories approach [17].

5.4 Chirality

There is one last aspect about diffeomorphisms that can be explained in terms of
Fig. 8. As stated in the caption of this figure, there are two versions of this space: one
where the identification of opposite faces is done via a 90◦ right-handed screw motion
and one where one uses a left-handed screw motion. These spaces are not related by
an orientation preserving diffeomorphism. This is equivalent to saying that, say, the
first of these spaces has no orientation-reversing self-diffeomorphism. Manifolds for
which this is the case are called chiral. There are no examples in two dimensions. To
see this, just consider the usual picture of a Riemannian genus g surface embedded
into R

3 and map it onto itself by a reflection at any of its planes of symmetry. So chiral
manifolds start to exist in 3 dimensions and continue to do so in all higher dimensions,
as was just recently shown [61]. If one tries to reflect the cube in Fig. 8 at one of its
symmetry planes one finds that this is incompatible with the boundary identifications,
that is, pairs of identified points are not mapped to pairs of identified points. Hence
this reflection simply does not define a map of the quotient space. This clearly does
not prove the nonexistence of orientation reversing maps, since there could be others
than these obvious candidates.

In fact, following an idea of proof in [83], the chirality of SG/D∗
8 (and others

of the form S3/G) can be reduced to that of L(4, 1). That the latter is chiral fol-
lows from the following argument: Above we have already stated that L(p, q) and
L(p, q ′) are orientation preserving diffeomorphic iff q ′ = q±1 (mod p). Since taking
the mirror image in R

3 of the lens representing L(p, q) gives the lens representing
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L(p,−q), L(p, q) admits an orientation reversing diffeomorphism iff L(p, q) and
L(p,−q) are orientation preserving diffeomorphic. But, as just stated, this is the
case iff −q = q±1 (mod p), i.e. if either p = 2, q = 1 (recall that p and q
must be coprime) or q2 = −1 (mod p).9 Hence, in particular, all L(p, 1) are chi-
ral. Now, G = D∗

8 has three subgroups isomorphic to Z4, the fundamental group
of L(4, 1), namely the ones generated by i , j , and k. They are normal so that we

have a regular covering L(4, 1)
p→S3/G. Now suppose f : S3/G → S3/G were

orientation reversing, i.e. a diffeomorphism with deg( f ) = −1. Consider the
diagram

L(4,1) L(4,1)
f̃ ��L(4,1)

S3/G

f ◦p
����

������

L(4,1)

S3/G

p

��

L(4,1) L(4,1)
f̃ ��L(4,1)

S3/G

f ◦p
����

������

L(4,1)

S3/G

p

��
S3/G S3/G

f
��

L(4,1)

S3/G

p

��

L(4,1)

S3/G

f ◦p
����

������ (42)

If the lift f̃ existed we would immediately get a contradiction since from commuta-
tivity of (42) we would get deg( f̃ ) · deg(p) = deg(p) · deg( f ) and hence deg( f̃ ) =
−1, which contradicts chirality of L(4, 1). Now, according to the theory of cover-
ing spaces the lift f̃ of f ◦ p exists iff the image of π1 (L(4, 1)) under ( f ◦ p)∗,
which is a subgroup Z4 ⊂ D∗

8 , is conjugate to the image of π1 (L(4, 1)) under p∗.
This need not be the case, however, as different subgroups Z4 in D∗

8 are normal and
hence never conjugate (here we deviate from the argument in [83] which seems incor-
rect). However, by composing a given orientation reversing f with an orientation
preserving diffeomorphism that undoes the Z4 subgroup permutation introduced by
f , we can always create a new orientation reversing diffeomorphism that does not per-
mute the Z4 subgroups. That new orientation reversing diffeomorphism—call it again
f —now indeed has a lift f̃ , so that finally we arrive at the contradiction envisaged
above.

As prime manifolds, the two versions of a chiral prime corresponding to the two
different orientations count as different. This means the following: Two connected
sums which differ only insofar as a particular chiral prime enters with different ori-
entations are not orientation-preserving diffeomorphic; they are not diffeomorphic at
all if the complement of the selected chiral prime also chiral (i.e. iff another chiral
prime exists). For example, the connected sum of two oriented S3/D∗

8 is not diffeo-

morphic to the connected sum of S3/D∗
8 with S3/D∗

8 , where the overbar indicates the
opposite orientation. Note that the latter case also leads to two non-homeomorphic
three-manifolds whose classic invariants (homotopy, homology, cohomology) coin-
cide. This provides an example of a topological feature of Σ that is not encoded into
the structure of SF(Σ).

9 Remarkably, this result was already stated in footnote 1 of p. 256 of [50]. An early published proof is that
in Sect. 77 of [68].
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6 Summary and outlook

Superspace is for geometrodynamics what gauge-orbit space is for non-abelian gauge
theories, though Superspace has generally a much richer topological and metric struc-
ture. Its topological structure encodes much of the topology of the underlying
three-manifold and one may conjecture that some of its topological invariants bear
the same relation to anomalies and sectorial structure as in the case of non-abelian
gauge theories. Recent progress in three-manifold theory now allows to make more
complete statements, in particular concerning the fundamental groups of Superspaces
associated to more complicated three-manifolds. Its metric structure is piecewise nice
but also suffers from singularities, corresponding to signature changes, whose physical
significance is unclear. Even for simple three-manifolds, like the three-sphere, there
are regions in Superspace where the metric is strictly Lorentzian (just one negative
signature and infinitely many pluses), like at the round three-sphere used in the FLRW
cosmological models, so that the Wheeler–DeWitt equation becomes strictly hyper-
bolic, but there are also regions with infinitely many negative signs in the signature.

Note that the cotangent bundle over Superspace is not the fully reduced phase space
for matter-free General Relativity. It only takes account of the vector constraints and
leaves the scalar constraint unreduced. However, under certain conditions, the scalar
constraints can be solved by the ‘conformal method’ which leaves only the confor-
mal equivalence class of three-dimensional geometries as physical configurations.
In those cases the fully reduced phase space is the cotangent bundle over conformal
Superspace, whose analog to (1) is given by replacing Diff(Σ) by the semi-direct prod-
uct C(Σ) � Diff(Σ), where C(Σ) is the abelian group of conformal rescalings that
acts on Riem(Σ) via ( f, h) �→ f h (pointwise multiplication), where f : Σ → R+.
The right action of ( f, φ) ∈ C(Σ) � Diff(Σ) on h ∈ Riem(Σ) is then given by
R( f,φ)(h) = f φ∗h, so that, using R( f2,φ2) R( f1,φ1) = R( f1,φ1)( f2,φ2), the semi-direct
product structure is seen to be ( f1, φ1)( f2, φ2) = ( f2( f1 ◦ φ2), φ1 ◦ φ2). Note that
because of ( f1 f2) ◦ φ = ( f1 ◦ φ)( f2 ◦ φ) Diff(Σ) indeed acts as automorphisms
of C(Σ). Conformal Superspace and extended conformal superspace would then, in
analogy to (1) and (4), be defined as CS(Σ) := Riem(Σ)/C(Σ) � Diff(Σ) and
CSF(Σ) := Riem(Σ)/C(Σ) � DiffF(Σ) respectively. The first definition was used
in [24] as applied to manifolds with 0◦ of symmetry (cf. footnote 3). In any case,
since C(Σ) is contractible, the topologies of C(Σ) � Diff(Σ) and C(Σ) � DiffF(Σ)

are those of Diff(Σ) and DiffF(Σ) which also transcend to the quotient spaces anal-
ogously to (36) whenever the groups act freely. In the first case this is essentially
achieved by restricting to manifolds of vanishing degree of symmetry, whereas in the
second case this follows almost as before, with the sole exception being (S3, h) with
h conformal to the round metric. 10 Hence the topological results obtained before
also apply to this case. In contrast, the geometry for conformal Superspace differs

10 Let CI(Σ, h) := {φ ∈ Diff(Σ) | φ∗h = f h, f : Σ → R+} be the group of conformal isometries. For
compact Σ it is known to be compact except iff Σ = S3 and h conformal to the round metric [53]. Hence,
for Σ �= S3, we can average h over the compact group CI(Σ, h) and obtain a new Riemannian metric h′
in the conformal equivalence class of h for which CI(Σ, h) acts as proper isometries. Therefore, by the
argument presented in Sect. 2, it cannot contain non-trivial elements fixing a frame.
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insofar from that discussed above as the conformal modes that formed the negative
directions of the Wheeler–DeWitt metric (cf. (9a) are now absent. The horizontal sub-
spaces [orthogonal to the orbits of C(Σ) � DiffF(Σ)] are now given by the transverse
and traceless [rather than just obeying (13)] symmetric two-tensors. In that sense the
geometry of conformal Superspace, if defined as before by some ultralocal bilinear
form on Riem(Σ), is manifestly positive (due to the absence of trace terms) and hence
less pathological than the Superspace metric discussed above. It might seem that its
physical significance is less clear, as there is now no constraint left that may be said
to induce this particular geometry; see however [9].

Whether it is a realistic hope to understand Superspace and conformal Superspace
(its cotangent bundle being the space of solutions to Einstein’s equations) well enough
to actually gain a sufficiently complete understanding of its automorphism group is
hard to say. An interesting strategy lies in the attempt to understand the solution space
directly in a group- (or Lie algebra-) theoretic fashion in terms of a quotient G∞/H∞,
where G∞ is an infinite dimensional group (Lie algebra) that (locally) acts transitively
on the space of solutions and H∞ is a suitable subgroup (algebra), usually the fixed-
point set of an involutive automorphism of G. The basis for the hope that this might
work in general is the fact that it works for the subset of stationary and axially sym-
metric solutions, where G∞ is the Geroch Group; cf. [12]. The idea for generalisation,
even to d = 11 supergravity, is expressed in [63] and further developed in [14].
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52. Kuchař, K. (1993) Canonical quantum gravity. In: Gleiser, R.J., Kosameh, C.N., Moreschi, O.M. (eds.)
General Relativity and Gravitation, pp. 119–150. IOP Publishing, Bristol (1993)

53. Lelong-Ferrand, J.: Transformation conformes et quasiconformes des variétés riemanniennes com-
pacts (démonstration de la conjecture de A. Lichnerowicz). Mémoires de la Classe Des Sciences de
l’Académie Royale Des Sciences, Des Lettres Et Des Beaux-Arts de Belgique 39(5), 3–44 (1971)

54. Lovelock, D.: The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13(6), 874–876
(1972)

55. McCarty, G.S.: Homeotopy groups. Trans. Am. Math. Soc. 106, 293–303 (1963)
56. McCullough, D.: Topological and algebraic automorphisms of 3-manifolds. In: Piccinini, R. (ed.)

Groups of Homotopy Equivalences and Related Topics. Springer Lecture Notes in Mathematics,
vol. 1425, pp. 102–113. Springer, Berlin (1990)

57. McCullough, D., Miller, A.: Homeomorphisms of 3-manifolds with compressible boundary. Mem.
Am. Math. Soc. 61(344) (1986)

58. Milnor, J.W.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84(1), 1–7 (1962)
59. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Company, New York

(1973)
60. Moise, E.E.: Affine structures in 3-manifolds V The triangulation theorem and Hauptvermutung. Ann.

Math 56(1), 96–114 (1952)
61. Müllner, D. (2008) Orientation Reversal of Manifolds. PhD thesis, Friedrich-Wilhelms-Universität

Bonn, October (2008)
62. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. 40(2),

400–416 (1939)
63. Nicolai, H.: On M-theory. J. Astrophys. Astronomy 20(3–4), 149–164 (1999)
64. Pons, J.M.: Generally covariant theories: The Noether obstruction for realizing certain space-time

diffeomorphisms inphase space. Classical Quantum Gravity 20(15), 3279–3294 (2003)
65. Reidemeister, K.: Homotopieringe und Linsenräume. Abhandlungen Aus Dem Mathematischen Sem-

inar der Universität Hamburg 11(1), 102–109 (1935)
66. Samuel, J.: Canonical gravity, diffeomorphisms and objective histories. Classical Quantum Gravity

17(22), 4645–4654 (2000)
67. Samuel, J.: Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Classical

Quantum Gravity 17(20), L141–L148 (2000)
68. Seifert, H., Threlfall, W.: A Textbook of Topology. Academic Press, Orlando, Florida, 1980. Translation

of the 1934 german edition (1980)

123



The Superspace of geometrodynamics 815

69. Sorkin, R.: Introduction to topological geons. In: Bergmann, P.G., De Sabbata, V. (eds.), Topological
Properties and Global Structure of Space–Time, NATO Advanced Study Institutes Series, vol. B138,
p. 249. D. Reidel Publishing Company, Dordrecht-Holland (1986)

70. Sorkin, R.: A general relation between kink-exchange and kink-rotation. Commun. Math. Phys. 115,
421–434 (1988)

71. Sorkin, R.: Classical topology and quantum phases: Quantum geons. In: De Filippo, S., Marina-
ro, M., Marmo, G., Vilasi, G. (eds.) Geometrical and Algebraic Aspects of Nonlinear Field Theory,
pp. 201–218. Elsevier, Amsterdam (1989)

72. Sorkin, R., Surya, S.: An analysis of the representations of the mapping class group of a multi-geon
three-manifold. Int. J. Mod. Phys. A 13(21), 3749–3790 (1998)

73. Stern, M.D.: Investigations of the Topology of Superspace. PhD thesis, Department of Physics,
Princeton University, 28 April (1967)

74. Teitelboim, C.: How commutators of constraints reflect the spacetime structure. Ann. Phys. 79(2),
542–557 (1973)

75. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathemat-
ical Physics. Cambridge University Press, Cambridge (2007)

76. Thorne, K.S., Lee, D.L., Lightman, A.P.: Foundations for a theory of gravitation theories. Phys. Rev.
D 7(12), 563–3578 (1973)

77. Wheeler, J.A.: Phys. Rev. 97(2), 511–536 (1955)
78. Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)
79. Wheeler, J.A.: Einsteins Vision. Springer, Berlin (1968)
80. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C.M., Wheeler,

J.A. (eds.) Battelle Rencontres, 1967 Lectures in Mathematics and Physics. pp. 242–307. W.A.
Benjamin, New York (1968)

81. Wheeler, J.A.: Particles and geometry. In: Breitenlohner, P., Dürr, H.P. (eds.) Unified Theories of
Elementary Particles, Lecture Notes in Physics, vol. 160, pp. 189–217. Springer, Berlin (1982)

82. Whitehead, J. H. C.: On incidence matrices, nuclei and homotopy types. Ann. Math. 42(5), 1197–1239
(1941)

83. Witt, D.: Symmetry groups of state vectors in canonical quantum gravity. J. Math. Phys. 27(2), 573–592
(1986)

84. Witt, D.: Vacuum space-times that admit no maximal slices. Phys. Rev. Lett. 57(12), 1386–1389 (1986)

123


	The Superspace of geometrodynamics
	Abstract
	1 Introduction
	2 Defining Superspace
	3 Geometry of Superspace
	4 Intermezzo: GR as simplest representation of symmetry
	4.1 3+1 decomposition
	4.2 Hamiltonian geometrodynamics
	4.3 Why constraints
	4.4 Uniqueness of Einstein's geometrodynamics

	5 Topology of configuration space
	5.1 General three-manifolds and specific examples
	5.2 The connected sum of two real-projective spaces
	5.3 Spinoriality
	5.4 Chirality

	6 Summary and outlook
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


