Skip to main content
Log in

Quantum nature of cosmological bounces

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Several examples are known where quantum gravity effects resolve the classical big bang singularity by a bounce. The most detailed analysis has probably occurred for loop quantum cosmology of isotropic models sourced by a free, massless scalar. Once a bounce has been realized under fairly general conditions, the central questions are how strongly quantum it behaves, what influence quantum effects can have on its appearance, and what quantum space-time beyond the bounce may look like. This, then, has to be taken into account for effective equations which describe the evolution properly and can be used for further phenomenological investigations. Here, we provide the first analysis with interacting matter with new effective equations valid for weak self-interactions or small masses. They differ from the free scalar equations by crucial terms and have an important influence on the bounce and the space-time around it. Especially the role of squeezed states, which have often been overlooked in this context, is highlighted. The presence of a bounce is proven for uncorrelated states, but as squeezing is a dynamical property and may change in time, further work is required for a general conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bojowald, M.: Loop Quantum Cosmology. Living Review Relativity 8, 11, [gr-qc/0601085], http://relativity.livingreviews.org/Articles/lrr-2005-11/ (2005)

  2. Bojowald, M.: Absence of a Singularity in Loop Quantum Cosmology. Phys. Rev. Lett. 86, 5227– 5230, [gr-qc/0102069] (2001)

    Google Scholar 

  3. Bojowald, M.: Isotropic loop quantum cosmology. Class. Quantum Grav. 19, 2717–2741, [gr-qc/ 0202077] (2002)

    Google Scholar 

  4. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268, [gr-qc/0304074] (2003)

    Google Scholar 

  5. Bojowald, M.: Singularities and Quantum Gravity. In: Proceedings of the XIIth Brazilian School on Cosmology and Gravitation, AIP Conference Proceedings 910, 294–333, [gr-qc/0702144] (2007)

  6. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301, [gr-qc/0602086] (2006)

  7. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. Phys. Rev. D 73, 124038, [gr-qc/0604013] (2006)

  8. Bojowald, M.: Large scale effective theory for cosmological bounces. Phys. Rev. D 75, 081301(R), [gr-qc/0608100] (2007)

  9. Bojowald M. (2007). What happened before the big bang?. Nat Phys 3: 523–525

    Article  Google Scholar 

  10. Bojowald, M.: Harmonic cosmology: how much can we know about a universe before the big bang? Proc. Roy. Soc. A. doi:10.1098/rspa.2008.0050, [arXiv:0710.4919]

  11. Corichi, A., Singh, P.: Quantum bounce and cosmic recall, arXiv:0710.4543

  12. Bojowald, M., Hernández, H., Skirzewski, A.: Effective equations for isotropic quantum cosmology including matter. Phys. Rev. D 76, 063511, [arXiv:0706.1057] (2007)

  13. Bojowald, M., Kastrup, H.A.: Symmetry reduction for quantized diffeomorphism invariant theories of connections. Class. Quantum Grav. 17, 3009–3043, [hep-th/9907042] (2000)

    Google Scholar 

  14. Bojowald, M., Hernández, H.H., Morales-Técotl, H.A.: Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quantum Grav. 23, 3491–3516, [gr-qc/0511058] (2006)

    Google Scholar 

  15. Engle, J.: Quantum field theory and its symmetry reduction. Class. Quant. Grav. 23, 2861–2893, [gr-qc/0511107] (2006)

    Google Scholar 

  16. Koslowski, T.: Reduction of a quantum theory, gr-qc/0612138

  17. Bojowald, M.: Loop quantum cosmology and inhomogeneities. Gen. Rel. Grav. 38, 1771–1795, [gr-qc/0609034] (2006)

    Google Scholar 

  18. Engle, J.: Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings. Class. Quantum Grav. 24, 5777–5802, [gr-qc/0701132] (2007)

    Google Scholar 

  19. Koslowski, T.: A Cosmological sector in loop quantum gravity, arXiv:0711.1098

  20. Weiss N. (1985). Constraints on Hamiltonian lattice formulations of field theories in an expanding universe. Phys. Rev. D 32: 3228–3232

    Article  ADS  MathSciNet  Google Scholar 

  21. Unruh, W.: Time, gravity, and quantum mechanics. In: Savitt, S.F. (ed). Time’s arrows today. pp. 23–94, [gr-qc/9312027]

  22. Jacobson, T.: Trans-Planckian redshifts and the substance of the space-time river, hep-th/0001085

  23. Doldán, R., Gambini, R., Mora, P.: Quantum mechanics for totally constrained dynamical systems and evolving Hilbert spaces. Int. J. Theor. Phys. 35, 2057, [hep-th/9404169] (1996)

  24. Bojowald, M.: The dark side of a patchwork universe. Gen. Rel. Grav. 40, 639–660, [arXiv:0705.4398] (2008)

    Google Scholar 

  25. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003, [gr-qc/0607039] (2006)

  26. Bojowald, M., Cartin, D., Khanna, G.: Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev. D 76, 064018, [arXiv:0704.1137] (2007)

  27. Nelson, W., Sakellariadou, M.: Lattice refining LQC and the matter Hamiltonian, Phys. Rev. D 76, 104003, [arXiv:0707.0588] (2007)

  28. Nelson, W., Sakellariadou, M.: Lattice refining loop quantum cosmology and inflation. Phys. Rev. D 76, 044015, [arXiv:0706.0179] (2007)

  29. Bojowald, M., Hossain, G.: Cosmological vector modes and quantum gravity effects, Class. Quantum Grav. 24, 4801–4816, [arXiv:0709.0872] (2007)

    Google Scholar 

  30. Bojowald, M., Hossain, G.: Quantum gravity corrections to gravitational wave dispersion. Phys. Rev. D 77, 023508, [arXiv:0709.2365] (2008)

  31. Vandersloot, K.: On the Hamiltonian constraint of loop quantum cosmology. Phys. Rev. D 71, 103506, [gr-qc/0502082] (2005)

  32. Bojowald, M.: Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018, [gr-qc/0105067] (2001)

  33. Thiemann, T.: QSD V: Quantum gravity as the natural regulator of matter quantum field theories. Class. Quantum Grav. 15, 1281–1314, [gr-qc/9705019] (1998)

    Google Scholar 

  34. Bojowald, M.: Quantization ambiguities in isotropic quantum geometry. Class. Quantum Grav. 19, 5113–5130, [gr-qc/0206053] (2002)

  35. Bojowald, M.: Loop quantum cosmology: recent progress. Pramana 63, 765–776, [gr-qc/0402053]. In: Proceedings of the international conference on gravitation and cosmology (ICGC 2004), Cochin, India (2004)

    Google Scholar 

  36. Bojowald, M.: Loop quantum cosmology IV: discrete time evolution. Class. Quantum Grav. 18, 1071–1088, [gr-qc/0008053] (2001)

  37. Brunnemann, J., Thiemann, T.: Unboundedness of triad-like operators in loop quantum gravity. Class. Quantum Grav. 23, 1429–1483, [gr-qc/0505033] (2006)

    Google Scholar 

  38. Bojowald, M.: Degenerate configurations, singularities and the non-abelian nature of loop quantum gravity. Class. Quantum Grav. 23, 987–1008, [gr-qc/0508118] (2006)

    Google Scholar 

  39. Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Grav. 15, 839–873, [gr-qc/9606089] (1998)

  40. Thiemann, T.: Quantum spin dynamics (QSD) II: the kernel of the Wheeler-DeWitt constraint operator. Class. Quantum Grav. 15, 875–905, [gr-qc/9606090] (1998)

    Google Scholar 

  41. Sabharwal, S., Khanna, G.: Numerical solutions to lattice-refined models in loop quantum cosmology. Class. Quantum Grav. 25, 085009, [arXiv:0711.2086] (2008)

  42. Bojowald, M.: The semiclassical limit of loop quantum cosmology. Class. Quantum Grav. 18, L109–L116, [gr-qc/0105113] (2001)

  43. Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quantum Grav. 20, 2595–2615, [gr-qc/0303073] (2003)

    Google Scholar 

  44. Bojowald, M., Date, G., Vandersloot, K.: Homogeneous loop quantum cosmology: the role of the spin connection. Class. Quantum Grav. 21, 1253–1278, [gr-qc/0311004] (2004)

    Google Scholar 

  45. Bojowald, M.: Non-singular black holes and degrees of freedom in quantum gravity. Phys. Rev. Lett. 95, 061301, [gr-qc/0506128] (2005)

  46. Bojowald, M.: Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512, [gr-qc/0703144] (2007)

  47. Bojowald, M., Skirzewski, A.: Effective equations of motion for quantum systems. Rev. Math. Phys. 18, 713–745, [math-ph/0511043] (2006)

    Google Scholar 

  48. Bojowald, M., Skirzewski, A.: Quantum gravity and higher curvature actions. Int. J. Geom. Meth. Mod. Phys. 4, 25–52, [hep-th/0606232]. In: Borowiec, A., Francaviglia, M. (eds.) Proceedings of “Current Mathematical Topics in Gravitation and Cosmology” (42nd Karpacz Winter School of Theoretical Physics) (2007)

  49. Singh, P.: Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds. Phys. Rev. D 73, 063508, [gr-qc/0603043] (2006)

  50. Date, G., Hossain, G.M.: Effective Hamiltonian for isotropic loop quantum cosmology. Class. Quantum Grav. 21, 4941–4953, [gr-qc/0407073] (2004)

    Google Scholar 

  51. Date, G., Hossain, G.M.: Genericity of big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett. 94, 011302, [gr-qc/0407074] (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bojowald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojowald, M. Quantum nature of cosmological bounces. Gen Relativ Gravit 40, 2659–2683 (2008). https://doi.org/10.1007/s10714-008-0645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0645-1

Keywords

Navigation