Skip to main content
Log in

Low-rank Representation for Seismic Reflectivity and its Applications in Least-squares Imaging

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Sparse representation and inversion have been widely used in the acquisition and processing of geophysical data. In particular, the low-rank representation of seismic signals shows that they can be determined by a few elementary modes with predominantly large singular values. We review global and local low-rank representation for seismic reflectivity models and then apply it to least-squares migration (LSM) in acoustic and viscoacoustic media. In the global singular value decomposition (SVD), the elementary modes determined by singular vectors represent horizontal and vertical stratigraphic segments sorted from low to high wavenumbers, and the corresponding singular values reflect the contribution of these basic modes to form a broadband reflectivity model. In contrast, local SVD for grouped patch matrices can capture nonlocal similarity and thus accurately represent the reflectivity model with fewer ranks than the global SVD method. Taking advantage of this favorable sparsity, we introduce a local low-rank regularization into LSM to estimate subsurface reflectivity models. A two-step algorithm is developed to solve this low-rank constrained inverse problem: the first step is for least-squares data fitting and the second is for weighted nuclear-norm minimization. Numerical experiments for synthetic and field data demonstrate that the low-rank constraint outperforms conventional shaping and total-variation regularizations, and can produce high-quality reflectivity images for complicated structures and low signal-to-noise data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  • Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput 100(1):90–93

    Article  Google Scholar 

  • Anvari R, Kahoo AR, Mohammadi M, Khan NA, Chen Y (2019) Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain. IEEE J Sel Top Appl Earth Obs Remote Sens 12(5):1612–1618

    Article  Google Scholar 

  • Arneodo A, Grasseau G, Holschneider M (1988) Wavelet transform of multifractals. Phys Rev Lett 61(20):2281

    Article  CAS  Google Scholar 

  • Barrett HH (1984) The radon transform and its applications. Prog Opt 21:217–286

    Article  Google Scholar 

  • Baysal E, Kosloff DD, Sherwood JW (1983) Reverse time migration. Geophysics 48(11):1514–1524

    Article  Google Scholar 

  • Beckouche S, Ma J (2014) Simultaneous dictionary learning and denoising for seismic data. Geophysics 79(3):A27–A31

    Article  Google Scholar 

  • Beylkin G (1987) Discrete radon transform. IEEE Trans Acoust Speech Signal Process 35(2):162–172

    Article  Google Scholar 

  • Blanc É, Komatitsch D, Chaljub E, Lombard B, Xie Z (2016) Highly accurate stability-preserving optimization of the zener viscoelastic model, with application to wave propagation in the presence of strong attenuation. Geophys J Int 205(1):427–439

    Article  Google Scholar 

  • Brigham EO (1988) The fast Fourier transform and its applications. Prentice-Hall Inc, New York

    Google Scholar 

  • Candes EJ (1998) Ridgelets: theory and applications. Stanford University, Stanford

    Google Scholar 

  • Candès EJ, Donoho DL et al (1999) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Department of Statistics, Stanford University, Stanford

    Google Scholar 

  • Candes E, Recht B (2012) Exact matrix completion via convex optimization. Commun ACM 55(6):111–119

    Article  Google Scholar 

  • Cheng J, Fomel S (2014) Fast algorithms for elastic-wave-mode separation and vector decomposition using low-rank approximation for anisotropic media. Geophysics 79(4):C97–C110

    Article  Google Scholar 

  • Cochran WT, Cooley JW, Favin DL, Helms HD, Kaenel RA, Lang WW, Maling GC, Nelson DE, Rader CM, Welch PD (1967) What is the fast Fourier transform? Proc IEEE 55(10):1664–1674

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19(90):297–301

    Article  Google Scholar 

  • Cui Y, Li S, Zhang W (2020) Jointly sparse signal recovery and support recovery via deep learning with applications in mimo-based grant-free random access. IEEE J Sel Areas Commun 39(3):788–803

    Article  Google Scholar 

  • Dai W, Wang X, Schuster G (2011) Least-squares migration of multisource data with a deblurring filter. Geophysics 76(5):R135–R146

    Article  Google Scholar 

  • Dai W, Fowler P, Schuster G (2012) Multi-source least-squares reverse time migration. Geophys Prospect 60(4):681–695

    Article  Google Scholar 

  • Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  • Duhamel P, Vetterli M (1990) Fast Fourier transforms: a tutorial review and a state of the art. Signal Process 19(4):259–299

    Article  Google Scholar 

  • Durrani T, Bisset D (1984) The radon transform and its properties. Geophysics 49(8):1180–1187

    Article  Google Scholar 

  • Dutta G (2017) Sparse least-squares reverse time migration using seislets. J Appl Geophys 136:142–155

    Article  Google Scholar 

  • Dutta G, Schuster GT (2014) Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 79(6):S251–S262

    Article  Google Scholar 

  • Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  Google Scholar 

  • Eisenbud D, Harris J (1988) Vector spaces of matrices of low rank. Adv Math 70(2):135–155

    Article  Google Scholar 

  • Fichtner A, van Driel M (2014) Models and Fréchet kernels for frequency-(in) dependent Q. Geophys J Int 198(3):1878–1889

    Article  Google Scholar 

  • Fletcher RP, Nichols D, Bloor R, Coates RT (2016) Least-squares migration-data domain versus image domain using point spread functions. Lead Edge 35(2):157–162

    Article  Google Scholar 

  • Fomel SB (2001) Three-dimensional seismic data regularization. Stanford University, Stanford

    Google Scholar 

  • Fomel S, Liu Y (2010) Seislet transform and seislet frame. Geophysics 75(3):V25–V38

    Article  Google Scholar 

  • Foster DJ, Mosher CC (1992) Suppression of multiple reflections using the radon transform. Geophysics 57(3):386–395

    Article  Google Scholar 

  • Fourier JBJ (1824) Théorie du mouvement de la chaleur dans les corps solides. Paris: Chez Firmin Didot, Pére et Fils (in French)

  • Gazdag J (1978) Wave equation migration with the phase-shift method. Geophysics 43(7):1342–1351

    Article  Google Scholar 

  • Gilbert F (1971) Excitation of the normal modes of the earth by earthquake sources. Geophys J Int 22(2):223–226

    Article  Google Scholar 

  • Gray SH, May WP (1994) Kirchhoff migration using Eikonal equation traveltimes. Geophysics 59(5):810–817

    Article  Google Scholar 

  • Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comput Vis 121:183–208

    Article  Google Scholar 

  • Guitton A (2004) Amplitude and kinematic corrections of migrated images for nonunitary imaging operators. Geophysics 69(4):1017–1024

    Article  Google Scholar 

  • Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2862–2869

  • Hennenfent G, Fenelon L, Herrmann FJ (2010) Nonequispaced curvelet transform for seismic data reconstruction: a sparsity-promoting approach. Geophysics 75(6):WB203–WB210

    Article  Google Scholar 

  • Herrmann FJ, Li X (2012) Efficient least-squares imaging with sparsity promotion and compressive sensing. Geophys Prospect 60(4):696–712

    Article  Google Scholar 

  • Hill R (1990) Gaussian beam migration. Geophysics 55(11):1416–1428

    Article  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  CAS  Google Scholar 

  • Hu Z, Yang J, Han L, Huang J, Qin S, Sun J, Yu Y (2023) Modeling seismic wave propagation in the loess plateau using a viscoacoustic wave equation with explicitly expressed quality factor. Front Earth Sci 10:1069166. https://doi.org/10.3389/feart.2022.1069166

    Article  Google Scholar 

  • Huang J, Nowack RL (2020) Machine learning using u-net convolutional neural networks for the imaging of sparse seismic data. Pure Appl Geophys 177:2685–2700

    Article  Google Scholar 

  • Jerri A (1977) The Shannon sampling theorem-its various extensions and applications: a tutorial review. Proc IEEE 65(11):1565–1596

    Article  Google Scholar 

  • Kishore Kumar N, Schneider J (2017) Literature survey on low rank approximation of matrices. Linear and Multilinear Algebra 65(11):2212–2244

    Article  Google Scholar 

  • Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee TW, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396

    Article  Google Scholar 

  • Li J, Wang D, Ji S, Li Y, Qian Z (2017) Seismic noise suppression using weighted nuclear norm minimization method. J Appl Geophys 146:214–220

    Article  Google Scholar 

  • Lin Y, Huang L (2015) Acoustic- and elastic-waveform inversion using a modified total-variation regularization scheme. Geophys J Int 200(1):489–502

    Article  Google Scholar 

  • Liu Q, Tromp J (2006) Finite-frequency kernels based on adjoint methods. Bull Seismol Soc Am 96(6):2383–2397

    Article  Google Scholar 

  • Liu HP, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys J Int 47(1):41–58

    Article  Google Scholar 

  • Liu D, Wang Z, Wen B, Yang J, Han W, Huang TS (2016) Robust single image super-resolution via deep networks with sparse prior. IEEE Trans Image Process 25(7):3194–3207

    Article  Google Scholar 

  • Liu Z, Chen Y, Schuster G (2020) Deep convolutional neural network and sparse least-squares migration. Geophysics 85(4):WA241–WA253

    Article  Google Scholar 

  • Liu D, Sacchi MD, Chen W (2022) Efficient tensor completion methods for 5-D seismic data reconstruction: low-rank tensor train and tensor ring. IEEE Trans Geosci Remote Sens 60:1–17

    CAS  Google Scholar 

  • Ma J (2013) Three-dimensional irregular seismic data reconstruction via low-rank matrix completion. Geophysics 78(5):V181–V192

    Article  Google Scholar 

  • Ma Y, Hale D, Gong B, Meng Z (2012) Image-guided sparse-model full waveform inversion. Geophysics 77(4):R189–R198

    Article  Google Scholar 

  • Marfurt KJ (1984) Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5):533–549

    Article  Google Scholar 

  • Markovsky I (2012) Low rank approximation: algorithms, implementation, applications, vol 906. Springer, Berlin

    Book  Google Scholar 

  • Marks RJI (2012) Introduction to Shannon sampling and interpolation theory. Springer, Berlin

    Google Scholar 

  • Martin GS, Wiley R, Marfurt KJ (2006) Marmousi2: an elastic upgrade for Marmousi. Lead Edge 25(2):156–166

    Article  Google Scholar 

  • McMechan GA (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31(3):413–420

    Article  Google Scholar 

  • Morgan J, Warner M, Arnoux G, Hooft E, Toomey D, VanderBeek B, Wilcock W (2016) Next-generation seismic experiments-II: wide-angle, multi-azimuth, 3-d, full-waveform inversion of sparse field data. Geophys J Int 204(2):1342–1363

    Article  Google Scholar 

  • Nemeth T, Wu C, Schuster GT (1999) Least-squares migration of incomplete reflection data. Geophysics 64(1):208–221

    Article  Google Scholar 

  • O’Brien M (1994) BP statics benchmark model. https://wiki.seg.org/wiki/1994_BP_statics_benchmark_model, Amoco Tulsa Research Lab, Tulsa, OK

  • Papyan V, Romano Y, Sulam J, Elad M (2018) Theoretical foundations of deep learning via sparse representations: a multilayer sparse model and its connection to convolutional neural networks. IEEE Signal Process Mag 35(4):72–89

    Article  Google Scholar 

  • Pereg D, Cohen I, Vassiliou AA (2020) Sparse seismic deconvolution via recurrent neural network. J Appl Geophys 175:103979

    Article  Google Scholar 

  • Portnoff M (1981) Time-scale modification of speech based on short-time Fourier analysis. IEEE Trans Acoust Speech Signal Process 29(3):374–390

    Article  Google Scholar 

  • Ren Z, Li Z (2020) Imaging of elastic seismic data by least-squares reverse time migration with weighted L2-norm multiplicative and modified total-variation regularizations. Geophys Prospect 68(2):411–430

    Article  Google Scholar 

  • Schroot B, Schüttenhelm R (2003) Expressions of shallow gas in the Netherlands North sea. Neth J Geosci 82(1):91–105

    Google Scholar 

  • Siahsar MAN, Gholtashi S, Kahoo AR, Marvi H, Ahmadifard A (2016) Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition. Geophysics 81(2):V117–V124

    Article  Google Scholar 

  • Song X, Alkhalifah T (2013) Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation. Geophysics 78(4):C33–C40

    Article  Google Scholar 

  • Stockwell RG, Mansinha L, Lowe R (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001

    Article  Google Scholar 

  • Stoffa P, Fokkema JT, de Luna Freire R, Kessinger W (1990) Split-step Fourier migration. Geophysics 55(4):410–421

    Article  Google Scholar 

  • Sun J, Zhu T, Fomel S (2015) Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 80(5):A103–A108

    Article  Google Scholar 

  • Sun J, Fomel S, Zhu T, Hu J (2016) Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation. Geophysics 81(4):S271–S279

    Article  Google Scholar 

  • To AC, Moore JR, Glaser SD (2009) Wavelet denoising techniques with applications to experimental geophysical data. Signal Process 89(2):144–160

    Article  Google Scholar 

  • Tošić I, Frossard P (2011) Dictionary learning. IEEE Signal Process Mag 28(2):27–38

    Article  Google Scholar 

  • Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys J Int 160(1):195–216

    Article  Google Scholar 

  • Turquais P, Asgedom EG, Söllner W (2017) A method of combining coherence-constrained sparse coding and dictionary learning for denoising. Geophysics 82(3):V137–V148

    Article  Google Scholar 

  • Wang J, Ma J, Han B, Cheng Y (2015) Seismic data reconstruction via weighted nuclear-norm minimization. Inverse Probl Sci Eng 23(2):277–291

    Article  Google Scholar 

  • Wang C, Zhu Z, Gu H, Wu X, Liu S (2019) Hankel low-rank approximation for seismic noise attenuation. IEEE Trans Geosci Remote Sens 57(1):561–573

    Article  Google Scholar 

  • Watson AB et al (1994) Image compression using the discrete cosine transform. Math J 4(1):81–88

    Google Scholar 

  • Xu S, Zhang Y, Lambaré G (2010) Antileakage Fourier transform for seismic data regularization in higher dimensions. Geophysics 75(6):WB113–WB120

    Article  Google Scholar 

  • Xue Z, Chen Y, Fomel S, Sun J (2016) Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization. Geophysics 81(1):S11–S20

    Article  Google Scholar 

  • Yang J, Zhu H (2018) A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation. Geophys J Int 215(2):1064–1079

    Article  Google Scholar 

  • Yang Y, Ma J, Osher S et al (2013) Seismic data reconstruction via matrix completion. Inverse Probl Imaging 7(4):1379–1392

    Article  Google Scholar 

  • Yang J, Zhu H, McMechan G, Zhang H, Zhao Y (2019) Elastic least-squares reverse time migration in vertical transverse isotropic media. Geophysics 84(6):S539–S553

    Article  Google Scholar 

  • Yang J, Huang J, Li Z, Zhu H, McMechan G, Zhang J, Zhao Y (2021) Mitigating velocity errors in least-squares imaging using angle-dependent forward and adjoint gaussian beam operators. Surv Geophys 42:1305–1346

    Article  Google Scholar 

  • Yang J, Huang J, Zhu H, McMechan G, Li Z (2022) An efficient and stable high-resolution seismic imaging method: point-spread function deconvolution. J Geophys Res Solid Earth 127(7):e2021JB023281

    Article  Google Scholar 

  • Zha Z, Zhang X, Wang Q, Tang L, Liu X (2018) Group-based sparse representation for image compressive sensing reconstruction with non-convex regularization. Neurocomputing 296:55–63

    Article  Google Scholar 

  • Zha Z, Yuan X, Wen B, Zhang J, Zhou J, Zhu C (2020) Image restoration using joint patch-group-based sparse representation. IEEE Trans Image Process 29:7735–7750

    Article  Google Scholar 

  • Zhang Y, Zhang G, Bleistein N (2005) Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration. Geophysics 70(4):E1–E10

    Article  Google Scholar 

  • Zhang J, Zhao D, Gao W (2014) Group-based sparse representation for image restoration. IEEE Trans Image Process 23(8):3336–3351

    Article  Google Scholar 

  • Zhang M, Liu Y, Bai M, Chen Y (2019) Seismic noise attenuation using unsupervised sparse feature learning. IEEE Trans Geosci Remote Sens 57(12):9709–9723

    Article  Google Scholar 

  • Zha Z, Wen B, Yuan X, Zhou J, Zhu C, Kot AC (2022) Low-rankness guided group sparse representation for image restoration. IEEE Trans Neural Netw Learn Syst

  • Zha Z, Yuan X, Li B, Zhang X, Liu X, Tang L, Liang YC (2017) Analyzing the weighted nuclear norm minimization and nuclear norm minimization based on group sparse representation. arXiv preprint arXiv:1702.04463

  • Zhu T, Harris JM (2014) Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79(3):T105–T116

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by funding from the National Natural Science Foundation of China Outstanding Youth Science Fund Project (Overseas) (No. ZX20230152), the Natural Science Foundation of Shandong Province-General Program (ZR2023MD087), the Marine S &T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2021QNLM020001), and the Major Scientific and the Technological Projects of Shandong Energy Group (No. SNKJ2022A06-R23). This paper is contribution number 1711 from the Department of Geosciences at the University of Texas at Dallas for H. Zhu and G. McMechan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the adjoint viscoacoustic wave equation

Appendix A: Derivation of the adjoint viscoacoustic wave equation

For the forward viscoacoustic wave Eq. 16, the augmented misfit function can be written as (Liu and Tromp 2006)

$$\begin{aligned} \begin{aligned} \chi&= \frac{1}{2}\left[ \delta {d}(\textbf{x}_r,t)-d_\textrm{obs}(\textbf{x}_r,t)\right] ^2 \\&\qquad -\int \int \left\{ \textbf{w}(\textbf{x},t)\cdot \left[ \frac{z(\textbf{x})}{v(\textbf{x})}\frac{\partial \textbf{v}(\textbf{x},t)}{\partial {t}} - \nabla {p}(\textbf{x},t)\right] \right. \\&\qquad +q(\textbf{x},t)\left[ \frac{1}{z(\textbf{x})v(\textbf{x})}\frac{\partial {p}(\textbf{x},t)}{\partial {t}} - \left( \left( 1+\frac{s}{Q(\textbf{x})}\right) \nabla \cdot \textbf{v}(\textbf{x},t) - \frac{1}{Q(\textbf{x})} \sum \limits ^N_{l=1} {\phi }^{(l)}(\textbf{x},t) \right) \right] \\&\qquad \left. +\sum \limits ^N_{l=1} \psi ^{(l)}(\textbf{x},t)\left[ \frac{\partial \phi ^{(l)}(\textbf{x},t)}{\partial {t}} +\frac{1}{\tau ^{(l)}}\phi ^{(l)}(\textbf{x},t)- \frac{D^{(l)}}{\tau ^{(l)}}\nabla \cdot \textbf{v}(\textbf{x},t)\right] \right\} {\text {d}}t {\text {d}}\textbf{x}^3, \end{aligned} \end{aligned}$$
(27)

where \(\textbf{w}(\textbf{x},t)\), \(q(\textbf{x},t)\) and \(\psi (\textbf{x},t)\) are the multipliers for \(\textbf{v}(\textbf{x},t)\), \(p(\textbf{x},t)\) and \(\phi (\textbf{x},t)\), respectively. Taking the variation of the augmented misfit function and neglecting the high-order terms, we have

$$\begin{aligned} \begin{aligned} \delta \chi&= \sum _{\textbf{x}_r}\int \int \delta {p}(\textbf{x},t)\delta (\textbf{x}-\textbf{x}_r)\left[ \delta {d}(\textbf{x}_r,t)-d_\textrm{obs}(\textbf{x}_r,t)\right] \\&\quad -\int \int \left\{ \textbf{w}(\textbf{x},t)\cdot \left[ \delta \ln {z}(\textbf{x})\frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{v}_0(\textbf{x},t)}{\partial {t}}+\frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \delta \textbf{v}(\textbf{x},t)}{\partial {t}} - \nabla \delta {p}(\textbf{x},t)\right] \right. \\&\quad +q(\textbf{x},t)\left[ -\frac{\delta \ln {z}(\textbf{x})}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {p}_0(\textbf{x},t)}{\partial {t}} + \frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial \delta {p}(\textbf{x},t)}{\partial {t}} \right. \\&\quad \left. - \left( \left( 1+\frac{s}{Q_0(\textbf{x})}\right) \nabla \cdot \delta \textbf{v}(\textbf{x},t) - \frac{1}{Q_0(\textbf{x})} \sum \limits ^N_{l=1}\delta {\phi }^{(l)}(\textbf{x},t) \right) \right] \\&\quad \left. +\sum \limits ^N_{l=1} \psi ^{(l)}(\textbf{x},t)\left[ \frac{\partial \delta \phi ^{(l)}(\textbf{x},t)}{\partial {t}} +\frac{1}{\tau ^{(l)}}\delta \phi ^{(l)}(\textbf{x},t)- \frac{D^{(l)}}{\tau ^{(l)}}\nabla \cdot \delta \textbf{v}(\textbf{x},t)\right] \right\} {\text {d}}t {\text {d}}\textbf{x}^3. \end{aligned} \end{aligned}$$
(28)

Using integral by part, Eq. 28 can be rewritten as

$$\begin{aligned} \begin{aligned} \delta \chi&= \sum _{\textbf{x}_r}\int \int \delta {p}(\textbf{x},t)\delta (\textbf{x}-\textbf{x}_r)\left[ \delta {d}(\textbf{x}_r,t)-d_\textrm{obs}(\textbf{x}_r,t)\right] \\&\quad -\int \int \left\{ \delta {p}(\textbf{x},t) \left[ -\frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {q}(\textbf{x},t)}{\partial {t}} + \nabla \cdot \textbf{w}(\textbf{x},t) \right] \right. \\&\quad +\delta \textbf{v}(\textbf{x},t)\cdot \left[ -\frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{w}(\textbf{x},t)}{\partial {t}} +\left( 1+\frac{s}{Q_0(\textbf{x})}\right) \nabla {q}(\textbf{x},t) + \sum \limits ^N_{l=1} \frac{D^{(l)}}{\tau ^{(l)}}\nabla \psi ^{(l)}(\textbf{x},t)\right] \\&\quad +\sum \limits ^N_{l=1}\delta \phi ^{(l)}(\textbf{x},t)\left[ -\frac{\partial \psi ^{(l)}(\textbf{x},t)}{\partial {t}} +\frac{1}{\tau ^{(l)}}\psi ^{(l)}(\textbf{x},t)+ \frac{1}{Q_0(\textbf{x})} {q}(\textbf{x},t) \right] \\&\quad \left. +\delta \ln {z}(\textbf{x})\left[ -\frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {p}_0(\textbf{x},t)}{\partial {t}}q(\textbf{x},t) + \frac{z_0(\textbf{x})}{v_0(\textbf{x})}\textbf{w}(\textbf{x},t)\cdot \frac{\partial \textbf{v}_0(\textbf{x},t)}{\partial {t}} \right] \right\} {\text {d}}t {\text {d}}\textbf{x}^3. \end{aligned} \end{aligned}$$
(29)

Then, we can obtain the adjoint wave equation by setting \({\partial \chi }/{\partial {p}}=0\), \({\partial \chi }/{\partial \textbf{v}}=0\), \({\partial \chi }/{\partial {\phi }}=0\), which has the following form

$$\begin{aligned} \begin{aligned}&\frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {q}(\textbf{x},t)}{\partial {t}} - \nabla \cdot \textbf{w}(\textbf{x},t) = -\delta (\textbf{x}-\textbf{x}_r)\left[ \delta {d}(\textbf{x}_r,t)-d_\textrm{obs}(\textbf{x}_r,t)\right] , \\&\quad \frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{w}(\textbf{x},t)}{\partial {t}} -\left( 1+\frac{s}{Q_0(\textbf{x})}\right) \nabla {q}(\textbf{x},t) - \sum \limits ^N_{l=1} \frac{D^{(l)}}{\tau ^{(l)}}\nabla \psi ^{(l)}(\textbf{x},t) = 0, \\&\quad \frac{\partial \psi ^{(l)}(\textbf{x},t)}{\partial {t}} - \frac{1}{\tau ^{(l)}}\psi ^{(l)}(\textbf{x},t) - \frac{1}{Q_0(\textbf{x})} {q}(\textbf{x},t) = 0. \end{aligned} \end{aligned}$$
(30)

Similarly, setting \({\partial \chi }/{\partial {\ln {z}}}=0\) yields the impedance kernel as

$$\begin{aligned} \begin{aligned}&K_z(\textbf{x}) =\int \left[ \frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {p}_0(\textbf{x},t)}{\partial {t}}q(\textbf{x},t) - \frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{v}_0(\textbf{x},t)}{\partial {t}}\cdot \textbf{w}(\textbf{x},t)\right] {\text {d}}t. \end{aligned} \end{aligned}$$
(31)

By defining the adjoint wavefields as

$$\begin{aligned} \begin{aligned} \textbf{v}^\dagger (\textbf{x},t)=\textbf{w}(\textbf{x},T-t), \quad {p}^\dagger (\textbf{x},t)={q}(\textbf{x},T-t), \quad \phi ^{\dagger (l)}(\textbf{x},t)=\psi ^{(l)}(\textbf{x},T-t), \end{aligned} \end{aligned}$$
(32)

the sensitivity kernel in Eq. 31 can be rewritten as

$$\begin{aligned} \begin{aligned}&K_z(\textbf{x}) =\int \left[ \frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {p}_0(\textbf{x},t)}{\partial {t}}p^{\dagger }(\textbf{x},T-t) - \frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{v}(\textbf{x},t)}{\partial {t}}\cdot \textbf{v}_0^\dagger (\textbf{x},T-t)\right] {\text {d}}t, \end{aligned} \end{aligned}$$
(33)

where the adjoint wavefields satisfy

$$\begin{aligned} \begin{aligned}&\frac{1}{z_0(\textbf{x})v_0(\textbf{x})}\frac{\partial {p}^\dagger (\textbf{x},t)}{\partial {t}} + \nabla \cdot \textbf{v}^\dagger (\textbf{x},t) = \delta (\textbf{x}-\textbf{x}_r)\left[ \delta {d}(\textbf{x}_r,T-t)-d_\textrm{obs}(\textbf{x}_r,T-t)\right] , \\&\quad \frac{z_0(\textbf{x})}{v_0(\textbf{x})}\frac{\partial \textbf{v}^\dagger (\textbf{x},t)}{\partial {t}} +\left( 1+\frac{s}{Q_0(\textbf{x})}\right) \nabla {p}^\dagger (\textbf{x},t) + \sum \limits ^N_{l=1} \frac{D^{(l)}}{\tau ^{(l)}}\nabla \phi ^{\dagger (l)}(\textbf{x},t) = 0, \\&\quad \frac{\partial \phi ^{\dagger (l)}(\textbf{x},t)}{\partial {t}} + \frac{1}{\tau ^{(l)}}\phi ^{\dagger (l)}(\textbf{x},t) + \frac{1}{Q_0(\textbf{x})} {p}^\dagger (\textbf{x},t) = 0. \end{aligned} \end{aligned}$$
(34)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Huang, J., Zhang, H. et al. Low-rank Representation for Seismic Reflectivity and its Applications in Least-squares Imaging. Surv Geophys (2024). https://doi.org/10.1007/s10712-024-09828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-024-09828-w

Keywords

Navigation