Skip to main content

Advertisement

Log in

Seismic Coherence for Discontinuity Interpretation

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Seismic coherence is of the essence for seismic interpretation as it highlights seismic discontinuity features caused by the deposition process, reservoir boundaries, tectonic movements, etc. Since its appearance in 1995, seismic coherence has become one of the most popular and highly recognized interpretation tools. In the last 25 years, there have been different kinds of approaches to calculate seismic coherence attributes, such as cross-correlation, semblance, and eigen-structure. We have also seen different coherence enhancement techniques and modified ways for coherence calculation to address different problems in diverse field applications. In this survey, we provide a general overview of seismic coherence, which is commonly used to delineate structural and stratigraphic discontinuities. We cover the development of the seismic coherence attributes via introducing existing approaches for coherence calculation, enhancement, spectral band-limited coherence methods, and offset-/azimuth-limited coherence methods. In addition, we also discuss the possible coherence artifacts and pitfalls. To better compare different techniques, field applications are provided, where different disciplinary coherence attributes with enhancement techniques are calculated for the channel, fault, carbonate karst, and volcano interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • AlBinHassan NM, Luo Y, Al-Faraj MN (2006) 3d edge-preserving smoothing and applications. Geophysics 71(4):P5–P11

    Article  Google Scholar 

  • Amonpantang P, Bedle H, Wu J (2019) Multiattribute analysis for channel element discrimination in the Taranaki basin, offshore New Zealand. Interpretation 7(2):SC45–SC61

    Article  Google Scholar 

  • Bahorich M, Farmer S (1995) 3-d seismic discontinuity for faults and stratigraphic features: the coherence cube. Lead Edge 14(10):1053–1058

    Article  Google Scholar 

  • Bakker P (2002) Image structure analysis for seismic interpretation. Citeseer

  • Barnes AE (2006) A filter to improve seismic discontinuity data for fault interpretation. Geophysics 71(3):P1–P4

    Article  Google Scholar 

  • Barnes AE (2007) A tutorial on complex seismic trace analysis. Geophysics 72(6):W33–W43

    Article  Google Scholar 

  • Bi Z, Wu X (2020) Improving fault surface construction with inversion-based methods. Geophysics 86(1):1–58

    Article  Google Scholar 

  • Carter N, Lines L (2001) Fault imaging using edge detection and coherency measures on Hibernia 3-d seismic data. Lead Edge 20(1):64–69

    Article  Google Scholar 

  • Castagna JP, Sun S (2006) Comparison of spectral decomposition methods. First Break 24(3):75

    Article  Google Scholar 

  • Chen Y, Zhang D, Jin Z, Chen X, Zu S, Huang W, Gan S (2016) Simultaneous denoising and reconstruction of 5-d seismic data via damped rank-reduction method. Geophys J Int 206(3):1695–1717

    Article  Google Scholar 

  • Chopra S, Kumar R, Marfurt KJ (2014) Seismic discontinuity attributes and Sobel filtering. In: SEG technical program expanded abstracts 2014, Society of Exploration Geophysicists, pp 1624–1628

  • Chopra S, Marfurt KJ (2005) Seismic attributes—a historical perspective. Geophysics 70(5):3SO-28SO

    Article  Google Scholar 

  • Chopra S Marfurt KJ (2007) Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists (SEG) and European Association of Geoscientists and Engineers (EAGE)

  • Chopra S, Marfurt KJ (2016) Spectral decomposition and spectral balancing of seismic data. Lead Edge 35(2):176–179

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2018) Coherence attribute applications on seismic data in various guises-part 1. Interpretation 6(3):T521–T529

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2019) Multispectral, multiazimuth, and multioffset coherence attribute applications. Interpretation 7(2):SC21–SC32

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2020) Adopting multispectral dip components for coherence and curvature attribute computations. Lead Edge 39(8):593–596

    Article  Google Scholar 

  • Cohen I, Coifman RR (2002) Local discontinuity measures for 3-d seismic data. Geophysics 67(6):1933–1945

    Article  Google Scholar 

  • Cohen I, Coult N, Vassiliou AA (2006) Detection and extraction of fault surfaces in 3d seismic data. Geophysics 71(4):P21–P27

    Article  Google Scholar 

  • Di H, Gao D (2014) Gray-level transformation and canny edge detection for 3d seismic discontinuity enhancement. Comput Geosci 72:192–200

    Article  Google Scholar 

  • Dony R (2001) Karhunen-Loeve transform. In: The transform and data compression handbook, vol 1, pp 1–34

  • Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  Google Scholar 

  • Duan Y, Wu C, Zheng X, Huang Y, Ma J (2018) Coherence based on spectral variance analysis. Geophysics 83(3):O55–O66

    Article  Google Scholar 

  • Fehmers GC, Höcker CF (2003) Fast structural interpretation with structure-oriented filtering. Geophysics 68(4):1286–1293

    Article  Google Scholar 

  • Gao D (2013) Wavelet spectral probe for seismic structure interpretation and fracture characterization: a workflow with case studieswavelet spectral probe. Geophysics 78(5):O57–O67

    Article  Google Scholar 

  • Gao W, Sacchi MD (2018) Multicomponent seismic data registration by nonlinear optimization. Geophysics 83(1):V1–V10

    Article  Google Scholar 

  • Gao X, Lu W, Li F, Jiang X (2013) The application of robust principal component analysis for weak seismic signal enhancement. In: 75th EAGE conference & exhibition, European Association of Geoscientists & Engineers (EAGE), pp cp–348

  • Gersztenkorn A, Marfurt KJ (1999) Eigenstructure-based coherence computations as an aid to 3-d structural and stratigraphic mapping. Geophysics 64(5):1468–1479

    Article  Google Scholar 

  • Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press

  • Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4):723–736

    Article  Google Scholar 

  • Guo H, Marfurt KJ, Liu J (2009) Principal component spectral analysis. Geophysics 74(4):P35–P43

    Article  Google Scholar 

  • Hale D (2009) Structure-oriented smoothing and semblance. CWP Report 635(635)

  • Hale D (2013a) Dynamic warping of seismic images. Geophysics 78(2):S105–S115

    Article  Google Scholar 

  • Hale D (2013b) Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3d seismic images. Geophysics 78(2):O33–O43

    Article  Google Scholar 

  • Hardage B (2009) Frequencies are fault finding factors: looking low aids data interpretation. AAPG Explor 30(9):34

    Google Scholar 

  • Hemmings-Sykes S (2012) The influence of faulting on hydrocarbon migration in the Kupe area, South Taranaki basin, New Zealand

  • Hilbert D (1912) Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, vol 3. BG Teubner

  • Honório BCZ, da Costa Correia UM, de Matos MC, Vidal AC (2017) Similarity attributes from differential resolution components. Interpretation 5(1):T65–T73

    Article  Google Scholar 

  • Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press

  • Huang L, Dong X, Clee TE (2017) A scalable deep learning platform for identifying geologic features from seismic attributes. Lead Edge 36(3):249–256

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454:903–995 (The Royal Society)

    Article  Google Scholar 

  • Infante-Paez L, Marfurt KJ (2017) Seismic expression and geomorphology of igneous bodies: A Taranaki basin, New Zealand, case study. Interpretation 5(3):SK121–SK140

    Article  Google Scholar 

  • Karimi P, Fomel S, Wood L, Dunlap D (2015) Predictive coherence. Interpretation 3(4):SAE1–SAE7

    Article  Google Scholar 

  • Khatiwada M, Keller GR, Marfurt KJ (2013) A window into the proterozoic: integrating 3d seismic, gravity, and magnetic data to image subbasement structures in the southeast fort worth Basina window into the proterozoic. Interpretation 1(2):T125–T141

    Article  Google Scholar 

  • King P, Thrasher G (1992) Post-eocene development of the Taranaki basin, New Zealand: convergent overprint of a passive margin: Chapter 7: Southwest Pacific and Eastern Indian ocean margins

  • Knox G (1982) Taranaki basin, structural style and tectonic setting. N Zeal J Geol Geophys 25(2):125–140

    Article  Google Scholar 

  • Kreimer N, Sacchi MD (2012) A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics 77(3):V113–V122

    Article  Google Scholar 

  • Kumar P (2016) Application of geometric attributes for interpreting faults from seismic data: an example from Taranaki basin. In: New Zealand: 86th annual international meeting. SEG, Expanded Abstracts, pp 2077–2081

  • Kumar PC, Mandal A (2018) Enhancement of fault interpretation using multi-attribute analysis and artificial neural network (ANN) approach: a case study from Taranaki basin, New Zealand. Explor Geophys 49(3):409–424

    Article  Google Scholar 

  • LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw 3361(10):1995

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Li F, Li Y, Lu W, Zhang Y, Zheng X (2012) Hydrocarbon detection for cavern carbonate reservoir using low-and-high-frequency anomalies in spectral decomposition. In: SEG technical program expanded abstracts 2012, Society of Exploration Geophysicists, pp 1–5

  • Li F, Lu W (2014) Coherence attribute at different spectral scales. Interpretation 2(1):SA99–SA106

    Article  Google Scholar 

  • Li F, Qi J, Lyu B, Marfurt KJ (2018a) Multispectral coherence. Interpretation 6(1):T61–T69

    Article  Google Scholar 

  • Li F, Qi J, Marfurt K (2015) Attribute mapping of variable-thickness incised valley-fill systems. Lead Edge 34(1):48–52

    Article  Google Scholar 

  • Li F, Rich J, Marfurt KJ, Zhou H (2014) Automatic event detection on noisy microseismograms. In: SEG technical program expanded abstracts, vol 2014, pp 2363–2367

  • Li F, Song W, et al (2017a) Automatic arrival identification system for real-time microseismic event location. In: 2017 SEG international exposition and annual meeting, Society of Exploration Geophysicists, pp 2934–2939

  • Li F, Sun F, Liu N, Xie R (2021a) Denoising seismic signal via resampling local applicability functions. IEEE Geosci Remote Sens Lett, 1–5. Early Access

  • Li F, Wu B, Liu N, Hu Y, Wu H (2019) Seismic time-frequency analysis via adaptive mode separation-based wavelet transform. IEEE Geosci Remote Sens Lett 17(4):696–700

    Article  Google Scholar 

  • Li F, Wu B, Liu N, Hu Y, Wu H (2020a) Seismic time-frequency analysis via adaptive mode separation-based wavelet transform. IEEE Geosci Remote Sens Lett 17(4):496–700

    Article  Google Scholar 

  • Li F, Zhang B, Verma S, Marfurt KJ (2018b) Seismic signal denoising using thresholded variational mode decomposition. Explor Geophys 49(4):450–461

    Article  Google Scholar 

  • Li F, Zhang B, Zhai R, Zhou H, Marfurt KJ (2017b) Depositional sequence characterization based on seismic variational mode decomposition. Interpretation 5(2):SE97–SE106

    Article  Google Scholar 

  • Li F, Zhou H, Wang Z, Wu X (2021b) ADDCNN: an attention-based deep dilated convolutional neural network for seismic facies analysis with interpretable spatial-spectral maps. IEEE Trans Geosci Remote Sens 59(2):1733–1744

    Article  Google Scholar 

  • Li H, Lin J, Liu N, Li F, Gao J (2020b) Seismic reservoir delineation via hankel transform based enhanced empirical wavelet transform. IEEE Geosci Remote Sens Lett 17(8):1411–1414

    Article  Google Scholar 

  • Li Y, Lu W, Xiao H, Zhang S, Li Y (2006) Dip-scanning coherence algorithm using eigenstructure analysis and supertrace technique. Geophysics 71(3):V61–V66

    Article  Google Scholar 

  • Lin T, Marfurt KJ (2017) What causes those annoying stair step artifacts on coherence volumes. AAPG Explor Geophys Corner, Article, 37830

  • Liu N, Gao J, Zhang B, Li F, Wang Q (2018) Time-frequency analysis of seismic data using a three parameters s transform. IEEE Geosci Remote Sens Lett 15(1):142–146

    Article  Google Scholar 

  • Liu N, Gao J, Zhang B, Wang Q, Jiang X (2019) Self-adaptive generalized s-transform and its application in seismic time–frequency analysis. IEEE Trans Geosci Remote Sens 57(10):7849–7859

    Article  Google Scholar 

  • Liu N, Gao J, Zhang Z, Jiang X, Lv Q (2017) High-resolution characterization of geologic structures using the synchrosqueezing transform. Interpretation 5(1):T75–T85

    Article  Google Scholar 

  • Liu N, Li Z, Sun F, Li F, Gao J (2020) Seismic geologic structure characterization using a high-order spectrum-coherence attribute. Interpretation 8(2):T391–T401

    Article  Google Scholar 

  • Liu W, Cao S, Chen Y (2015) Seismic time-frequency analysis via empirical wavelet transform. IEEE Geosci Remote Sens Lett 13(1):28–32

    Article  Google Scholar 

  • Lou Y, Zhang B, Wang R, Lin T, Cao D (2019) Seismic fault attribute estimation using a local fault model. Geophysics 84(4):O73–O80

    Article  Google Scholar 

  • Lu W, Li F (2013) Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram. Geophysics 78(2):V43–V51

    Article  Google Scholar 

  • Lu W, Li Y, Zhang S, Xiao H, Li Y (2005) Higher-order-statistics and supertrace-based coherence-estimation algorithm. Geophysics 70(3):P13–P18

    Article  Google Scholar 

  • Luo Y, Higgs W, Kowalik W (1996) Edge detection and stratigraphic analysis using 3d seismic data. In: SEG technical program expanded abstracts 1996, Society of Exploration Geophysicists, pp 324–327

  • Lyu B, Li F, Qi J, Zhao T, Marfurt KJ et al. (2018) Highlighting discontinuities with variational mode decomposition based coherence. In: 2018 SEG international exposition and annual meeting, Society of Exploration Geophysicists, pp 1798–1802

  • Lyu B, Qi J, Li F, Hu Y, Zhao T, Verma S, Marfurt KJ (2020a) Multispectral coherence: which decomposition should we use? Interpretation 8(1):T115–T129

    Article  Google Scholar 

  • Lyu B, Qi J, Machado G, Li F, Marfurt KJ, et al. (2019) Seismic fault enhancement using spectral decomposition assisted attributes. In: SEG international exposition and annual meeting, Society of Exploration Geophysicists, pp 1938–1942

  • Lyu B, Qi J, Sinha S, Li J, Marfurt KJ (2020b) Improving fault delineation using maximum entropy multi-spectral coherence. Interpretation 8(4):T835–T850

    Article  Google Scholar 

  • Machado G, Alali A, Hutchinson B, Olorunsola O, Marfurt KJ (2016) Display and enhancement of volumetric fault images. Interpretation 4(1):SB51–SB61

    Article  Google Scholar 

  • Mao Z-G, Zhu R-K, Luo J-L, Wang J-H, Du Z-H, Su L, Zhang S-M (2015) Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China. Pet Sci 12(1):54–66

    Article  Google Scholar 

  • Marfurt K (2017) Interpretational aspects of multispectral coherence. In: 79th EAGE conference and exhibition 2017, vol 2017, European Association of Geoscientists & Engineers, pp 1–5

  • Marfurt KJ (2006) Robust estimates of 3d reflector dip and azimuth. Geophysics 71(4):P29–P40

    Article  Google Scholar 

  • Marfurt KJ (2018) Seismic attributes as the framework for data integration throughout the oilfield life cycle. SEG Books

  • Marfurt KJ, Kirlin RL, Farmer SL, Bahorich MS (1998) 3-d seismic attributes using a semblance-based coherency algorithm. Geophysics 63(4):1150–1165

    Article  Google Scholar 

  • Mendel JM (1991) Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc IEEE 79(3):278–305

    Article  Google Scholar 

  • Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM (2005) Mississippian barnett shale, fort worth basin, north-central texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bull 89(2):155–175

    Article  Google Scholar 

  • Nagao M, Matsuyama T (1979) Edge preserving smoothing. Comput Gr Image Process 9(4):394–407

    Article  Google Scholar 

  • Naghizadeh M, Sacchi M (2013) Multidimensional de-aliased Cadzow reconstruction of seismic records. Geophysics 78(1):A1–A5

    Article  Google Scholar 

  • Noori M, Hassani H, Javaherian A, Amindavar H, Torabi S (2019) Automatic fault detection in seismic data using Gaussian process regression. J Appl Geophys 163:117–131

    Article  Google Scholar 

  • Oropeza V, Sacchi M (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76(3):V25–V32

    Article  Google Scholar 

  • Orozco-Del-Castillo M-G, Ortiz-Aleman C, Martin R, Avila-Carrera R, Rodriguez-Castellanos A (2011) Seismic data interpretation using the Hough transform and principal component analysis. J Geophys Eng 8(1):61–73

    Article  Google Scholar 

  • Partyka G, Gridley J, Lopez J (1999) Interpretational applications of spectral decomposition in reservoir characterization. Lead Edge 18(3):353–360

    Article  Google Scholar 

  • Pedersen SI, Skov T, Randen T, Sønneland L (2005) Automatic fault extraction using artificial ants. In: Mathematical methods and modelling in hydrocarbon exploration and production. Springer, pp 107–116

  • Puryear CI, Portniaguine ON, Cobos CM, Castagna JP (2012) Constrained least-squares spectral analysis: application to seismic data. Geophysics 77(5):V143–V167

    Article  Google Scholar 

  • Qi J, Gu H, Li F, Marfurt K (2017a) Multi-azimuth coherence: 87th annual international meeting SEG. In: Expanded abstracts 2096–2101

  • Qi J, Li F, Lyu B, Olorunsola O, Marfurt K, Zhang B et al. (2016a) Seismic fault enhancement and skeletonization. In: 2016 SEG international exposition and annual meeting, Society of Exploration Geophysicists, pp 1966–1970

  • Qi J, Li F, Marfurt K (2017b) Multiazimuth coherencemultiazimuth coherence. Geophysics 82(6):O83–O89

    Article  Google Scholar 

  • Qi J, Lin T, Zhao T, Li F, Marfurt K (2016b) Semisupervised multiattribute seismic facies analysis. Interpretation 4(1):SB91–SB106

    Article  Google Scholar 

  • Qi J, Lyu B, AlAli A, Machado G, Hu Y, Marfurt K (2019) Image processing of seismic attributes for automatic fault extraction. Geophysics 84(1):O25–O37

    Article  Google Scholar 

  • Qi J, Lyu B, Wu X, Marfurt K (2020) Comparing convolutional neural networking and image processing seismic fault detection methods. In: SEG technical program expanded abstracts 2020, Society of Exploration Geophysicists, pp 1111–1115

  • Qi J, Machado G, Marfurt K (2017c) A workflow to skeletonize faults and stratigraphic features. Geophysics 82(4):O57–O70

    Article  Google Scholar 

  • Qi J, Zhang B, Zhou H, Marfurt K (2014) Attribute expression of fault-controlled karst-fort worth basin, Texas: a tutorial. Interpretation 2(3):SF91–SF110

    Article  Google Scholar 

  • Reilly C, Nicol A, Walsh JJ, Seebeck H (2015) Evolution of faulting and plate boundary deformation in the southern Taranaki basin, New Zealand. Tectonophysics 651:1–18

    Article  Google Scholar 

  • Roende H, Meeder C, Allen J, Peterson S, Eubanks D, Ribeiro C (2008) Estimating subsurface stress direction and intensity from surface full azimuth land data. In: SEG technical program expanded abstracts 2008, Society of Exploration Geophysicists, pp 217–221

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom 60(1–4):259–268

    Article  Google Scholar 

  • Sacchi MD, Ulrych TJ (1996) Estimation of the discrete Fourier transform, a linear inversion approach. Geophysics 61(4):1128–1136

    Article  Google Scholar 

  • Sacchi MD, Ulrych TJ, Walker CJ (1998) Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE Trans Signal Process 46(1):31–38

    Article  Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  • Sheriff RE (2002) Encyclopedic dictionary of applied geophysics, vol 13. SEG Books

  • Sui J, Zheng X, Li Y (2015) A seismic coherency method using spectral attributes. Appl Geophys 12(3):353–361

    Article  Google Scholar 

  • Sun F, Gao J, Zhang B, Liu N (2020) Coherence algorithm with a high-resolution time-time transform and feature matrix for seismic data. Geophys Prospect 68(4):1113–1125

    Article  Google Scholar 

  • Sun F, Zhang B (2020) A generalized coherence algorithm based on kernel correlation. IEEE Geosci Remote Sensing Lett 17:2040

    Article  Google Scholar 

  • Taner MT, Koehler F, Sheriff R (1979) Complex seismic trace analysis. Geophysics 44(6):1041–1063

    Article  Google Scholar 

  • Trickett S (2008) F-xy cadzow noise suppression. In: SEG technical program expanded abstracts 2008, Society of Exploration Geophysicists, pp 2586–2590

  • Van Bemmel PP, Pepper RE (2000) Seismic signal processing method and apparatus for generating a cube of variance values. US Patent 6,151,555

  • Van Vliet LJ, Verbeek PW (1995) Estimators for orientation and anisotropy in digitized images. In: ASCI imaging workshop, Venray, NL, October 25–27. Citeseer

  • Verma S, Bhattacharya S, Lujan B, Agrawal D, Mallick S (2018) Delineation of early Jurassic aged sand dunes and paleo-wind direction in southwestern Wyoming using seismic attributes, inversion, and petrophysical modeling. J Natl Gas Sci Eng 60:1–10

    Article  Google Scholar 

  • Vernengo L, Trinchero E (2015) Application of amplitude volume technique attributes, their variations, and impact. Lead Edge 34(10):1246–1253

    Article  Google Scholar 

  • Vernengo L, Trinchero E, Torrejón MG, Rovira I (2017) Amplitude volume technique attributes and multidimensional seismic interpretation. Lead Edge 36(9):776–781

    Article  Google Scholar 

  • Wang J, Lu W-K (2010) Coherence cube enhancement based on local histogram specification. Appl Geophys 7(3):249–256

    Article  Google Scholar 

  • Wang S, Yuan S, Wang T, Gao J, Li S (2018a) Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection. Geophysics 83(6):O105–O113

    Article  Google Scholar 

  • Wang T, Yuan S, Gao J, Li S, Wang S (2019) Multispectral phase-based geosteering coherence attributes for deep stratigraphic feature characterization. IEEE Geosci Remote Sens Lett 16(8):1309–1313

    Article  Google Scholar 

  • Wang X, Gao J, Chen W, Song Y (2012) An efficient implementation of eigenstructure-based coherence algorithm using recursion strategies and the power method. J Appl Geophys 82:11–18

    Article  Google Scholar 

  • Wang X, Zhang B, Li F, Qi J, Bai B (2016a) Seismic time-frequency decomposition by using a hybrid basis-matching pursuit technique. Interpretation 4(2):T239–T248

    Article  Google Scholar 

  • Wang Y (2007) Seismic time-frequency spectral decomposition by matching pursuit. Geophysics 72(1):V13–V20

    Article  Google Scholar 

  • Wang Z, Bo L, Liu N, Wu B, Zhu X (2021) Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geosci Remote Sens Lett 1–5

  • Wang Z, Gao J, Wang P, Jiang X (2016b) The analytic wavelet transform with generalized Morse wavelets to detect fluvial channels in the Bohai Bay Basin, China. Geophysics 81(4):O1–O9

    Article  Google Scholar 

  • Wang Z, Li F, Taha T, Arabnia H (2018b) 2d multi-spectral convolutional encoder-decoder model for geobody segmentation. In: 2018 international conference on computational science and computational intelligence (CSCI), IEEE, pp 1193–1198

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  • Wu H, Zhang B, Li F, Liu N (2019a) Semi-automatic first arrival picking of micro-seismic events by using pixel-wise convolutional image segmentation method. Geophysics 84(3):V143–V155

    Article  Google Scholar 

  • Wu H, Zhang B, Lin T, Li F, Liu N (2019b) White noise attenuation of seismic data by integrating variational mode decomposition and convolutional neural network. Geophysics 84(5):V307–V317

    Article  Google Scholar 

  • Wu X (2017) Directional structure-tensor-based coherence to detect seismic faults and channels. Geophysics 82(2):A13–A17

    Article  Google Scholar 

  • Wu X, Fomel S (2018) Automatic fault interpretation with optimal surface voting. Geophysics 83(5):O67–O82

    Article  Google Scholar 

  • Wu X, Geng Z, Shi Y, Pham N, Fomel S, Caumon G (2020a) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics 85:WA27

    Article  Google Scholar 

  • Wu X, Guo Z (2019) Detecting faults and channels while enhancing seismic structural and stratigraphic features. Interpretation 7(1):T155–T166

    Article  Google Scholar 

  • Wu X, Hale D (2016) 3d seismic image processing for faults. Geophysics 81(2):IM1–IM11

    Article  Google Scholar 

  • Wu X, Liang L, Shi Y, Fomel S (2019c) Faultseg3d: using synthetic data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation. Geophysics 84(3):IM35–IM45

    Article  Google Scholar 

  • Wu X, Luo S, Hale D (2016) Moving faults while unfaulting 3d seismic images. Geophysics 81(2):IM25–IM33

    Article  Google Scholar 

  • Wu X, Yan S, Qi J, Zeng H (2020b) Deep learning for characterizing paleokarst features in 3d seismic images. In: SEG technical program expanded abstracts 2020, Society of Exploration Geophysicists, pp 1454–1459

  • Wu X, Zhu Z (2017) Methods to enhance seismic faults and construct fault surfaces. Comput Geosci 107:37–48

    Article  Google Scholar 

  • Xiong W, Ji X, Ma Y, Wang Y, AlBinHassan NM, Ali MN, Luo Y (2018) Seismic fault detection with convolutional neural network. Geophysics 83(5):O97–O103

    Article  Google Scholar 

  • Yan B, Fang R, Huang X, Ou W (2021) Multidirectional eigenvalue-based coherence attribute for discontinuity detection. Geophysics 86(3):O29–O36

    Article  Google Scholar 

  • Yang L, Gao J, Liu N, Yang T, Jiang X (2019) A coherence algorithm for 3-d seismic data analysis based on the mutual information. IEEE Geosci Remote Sens Lett 16(6):967–971

    Article  Google Scholar 

  • Yang T, Gao J-H, Zhang B, Wang D-X (2016) Coherence estimation algorithm using kendall’s concordance measurement on seismic data. Appl Geophys 13(3):529–538

  • Yang T, Zhang B, Gao J (2015) A fast algorithm for coherency estimation in seismic data based on information divergence. J Appl Geophys 115:140–144

    Article  Google Scholar 

  • Yuan S, Ji Y, Shi P, Zeng J, Gao J, Wang S (2018a) Sparse Bayesian learning-based seismic high-resolution time-frequency analysis. IEEE Geosci Remote Sens Lett 16(4):623–627

    Article  Google Scholar 

  • Yuan S, Su Y, Wang T, Wang J, Wang S (2018b) Geosteering phase attributes: a new detector for the discontinuities of seismic images. IEEE Geosci Remote Sens Lett 16(1):145–149

    Article  Google Scholar 

  • Zhang B, Lin T, Guo S, Davogustto OE, Marfurt KJ (2016) Noise suppression of time-migrated gathers using prestack structure-oriented filtering. Interpretation 4(2):SG19–SG29

    Article  Google Scholar 

  • Zhang B, Liu Y, Pelissier M, Hemstra N (2014) Semiautomated fault interpretation based on seismic attributes. Interpretation 2(1):SA11–SA19

    Article  Google Scholar 

  • Zhang B, Lou Y (2020) Automatic seismic fault surfaces construction using seismic discontinuity attribute. In: SEG technical program expanded abstracts 2020, Society of Exploration Geophysicists, pp 1101–1105

  • Zhang D, Zhou Y, Chen H, Chen W, Zu S, Chen Y (2017) Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3d seismic data. Geophysics 82(5):V351–V367

    Article  Google Scholar 

  • Zhang K, Marfurt KJ, Wan Z, Zhan S (2011) Seismic attribute illumination of an igneous reservoir in china. Lead Edge 30(3):266–270

    Article  Google Scholar 

  • Zhang P, Lu W, Li F (2013) Supertrace-based coherence algorithm with robust slope estimation. In: 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, European Association of Geoscientists and Engineers, pp cp–348–00276

  • Zhao T, Li F, Marfurt KJ (2017) Constraining self-organizing map facies analysis with stratigraphy: an approach to increase the credibility in automatic seismic facies classification. Interpretation 5(2):T163–T171

    Article  Google Scholar 

  • Zhao T, Mukhopadhyay P, et al. (2018) A fault detection workflow using deep learning and image processing. In 2018 SEG international exposition and annual meeting, Society of Exploration Geophysicists, pp 1966–1970

  • Zhao T, Zhang J, Li F, Marfurt KJ (2016) Characterizing a turbidite system in Canterbury Basin, New Zealand, using seismic attributes and distance-preserving self-organizing maps. Interpretation 4(1):SB79–SB89

    Article  Google Scholar 

  • Zhao X, Wang S, Yuan S, Xu C, Wang T (2020) An efficient and robust scheme for the implementation of eigenstructure-based coherency algorithm. Geophysics 85(5):1–12

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the sponsors of the Attribute-Assisted Seismic Processing and Interpretation (AASPI) consortium in The University of Oklahoma, The University of Alabama, and The University of Texas Permian Basin. This work was also supported by National Key Research and Development Project under Grants 2018YFC1900800-5, National Science Foundation of China under Grants 61890930-5, 61903010, 62021003 and 62125301, Beijing Outstanding Young Scientist Program under Grant BJJWZYJH01201910005020, and Beijing Natural Science Foundation under Grant KZ202110005009.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and B.Z. were involved in conceptualization; F.L. and B.L. had contributed to methodology; F.L., B.L., J.Q., and B.Z. took part in software; F.L., B.L. J.Q. S.V., and B.Z. analyzed the data and results; F.L., B.L., and S.V. wrote and prepared the original draft and prepared the images; F.L., J.Q., and B.Z. carried out writing, reviewing, and editing; and S.V. and B.Z. acquired the funding.

Corresponding author

Correspondence to Bo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Artificial Intelligence (AI)-based Seismic Discontinuity Interpretation

Appendix A: Artificial Intelligence (AI)-based Seismic Discontinuity Interpretation

Classic coherence calculations are typically based on the mathematical descriptions of the geophysical data representations of various structures, which can be viewed as “model-driven” methods. Seismic discontinuity detection and characterization is time-consuming, as the discontinuities need to be handpicked from raw seismic images, which may take weeks to months on a typical size seismic volume by an experienced interpreter (Bahorich and Farmer 1995). The manual discontinuity picking results are highly dependent on knowledge, experience, and even the mode of interpreters, and so human bias is inevitable.

Recently, artificial intelligence (AI) techniques have been widely applied in various fields, including audio processing, computer vision, natural language processing (LeCun et al. 2015). Therefore, there is also an increasing interest in applying machine learning and deep learning technologies to seismic data processing and interpretation (Qi et al. 2016b; Zhao et al. 2016, 2017, 2018; Wang et al. 2018b; Xiong et al. 2018; Wu et al. 2019a, b, c, 2020a, b; Wang et al. 2021; Li et al. 2021b). Machine learning (especially deep learning) technologies are powerful for mining features or relationships from data, which makes them quite suitable for learning from human experience (LeCun et al. 2015; Schmidhuber 2015). Many novel data-driven technologies have been developed in the field of deep learning to perform big data analytics automatically. One of the most popular deep learning technologies is the convolutional neural network (CNN), with successful applications in image recognition and classification (LeCun et al. 1995). State-of-the-art CNNs can recognize images even better than humans. Deep learning technologies are showing great potentials and promising results in exploration geophysics (Wu et al. 2019a, b, c; Li et al. 2021b). Thus, deep learning can be employed to assist interpreters for this labor-intensive task, such as 3D fault segmentation (Wu et al. 2019c), and automatic fault extraction based on CNN (Xiong et al. 2018). Without using “expert knowledge” or using very limited expert knowledge, AI assists the seismic discontinuity characterization via training the data-driven models based on manually interpreted labels. Xiong et al. (2018) developed a convolutional neural network (CNN)-based method to automatically detect and map fault zones using 3D seismic images in a similar fashion to the way done by interpreters. CNN methods have also been introduced to detect faults by pixel-wise fault classification (fault or non-fault) with multiple seismic attributes (Huang et al. 2017; Zhao et al. 2018). In addition, Wu et al. (2019c) not only predicted the fault probability but also estimate the fault orientations at the same time.

For the traditional seismic coherence techniques described in Sect. 2, discontinuity/coherence attributes are calculated according to the mathematical expressions of the geological structures. For the AI-based methods, data-driven models describing complex hidden features between geophysical data and interpretation are trained based on the human interpreted labels. The CNN-based fault extraction method outperforms in detecting high-angle dipping faults, while traditional image processing-based methods exhibit promising performances in vertical normal fault illustration (Qi et al. 2020). However, one typical limitation of applying deep learning models in seismic interpretation is the preparation of adequate training data sets and especially the corresponding geologic labels. To address this incomplete or inaccurate labeling issue, automatic structural interpretation can be improved by using a workflow to automatically build diverse structure models with realistic folding and faulting features (Wu et al. 2020a). AI has shown promising results in the seismic discontinuity interpretation, which is a beneficial complement to the traditional coherence calculation approaches. However, an optimal solution to this data and labeling challenge is still under development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Lyu, B., Qi, J. et al. Seismic Coherence for Discontinuity Interpretation. Surv Geophys 42, 1229–1280 (2021). https://doi.org/10.1007/s10712-021-09670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09670-4

Keywords

Navigation