Skip to main content
Log in

Crustal Stress in the Northern Red Sea Region as Inferred from Seismic b-values, Seismic Moment Release, Focal Mechanisms, Gravity, Magnetic, and Heat Flow Data

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This study explores the spatial distribution of seismicity, the pattern of b-values, gravity and magnetic anomalies, heat flow data, and focal mechanism solutions to more thoroughly understand the present-day stress distribution and the nature of the crust, which characterize the rifting process in the northern Red Sea region. The region shows alternating low and high b-values in congruence with low and high cumulative seismic moment releases, respectively, and with negative and positive gravity anomalies, respectively. In general, except for larger-sized earthquake locations that characterized by high stress accumulation, low b-values, low seismic moment release, and low-gravity anomalies dominate the zones of the Gulf of Aqaba and the Gulf of Suez, thereby implying low stress accumulation consistent with an old crust of no differential development. Conversely, the rest of the Northern Red Sea region exhibited heterogeneities in the spatial distribution of b-values, cumulative seismic moment releases, and gravity anomalies, thereby implying stress heterogeneities. The stress heterogeneities may impute to the differences in material properties of the upper crust in the region. Zones of a positive Bouguer anomaly and high stress are notably associated with a relatively weak crust characterized by high rate of seismicity, while zones of the negative Bouguer anomaly and low stress characterized an older and more stable crust. However, details on the nature of crust required additional geophysical and geological data of high resolution in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelfattah AK, Almadani S, Fnais M, Alfaifi HJ, Al-Arifi N, Al-amri A et al (2019) Rupture characteristics of a small-sized earthquake (MW 4.2), onshore the south Red Sea, Saudi Arabia. J Afr Earth Sc 151:315–323

    Google Scholar 

  • Abdel-Fattah AK, Mogren SM, Almadani S (2016) Seismicity constraints on stress regimes along Sinai subplate boundaries. Stud Geophys Geod 60(2):268–279

    Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Aki K (1966) Earthquake generating stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns. Bull Earthq Res Inst Univ Tokyo 44:447–471

    Google Scholar 

  • Al-Amri AM (1995) Recent seismic activity in the northern Red Sea. J Geodyn 20(3):243–253

    Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2015) The Red Sea–50 years of geological and geophysical research. Earth Sci Rev 147:109–140

    Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2016) Incipient seafloor spreading segments: insights from the Red Sea. Geophys Res Lett 43(6):2709–2715

    Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B (2010) Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29(3):TC3011

    Google Scholar 

  • Badawy A, Abdel-Fattah AK (2006) 2001 August earthquake swarm at Shadwan Island, Gulf of Suez, Egypt. Geophys J Int 167(1):288–296

    Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2011) Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86:499–520

    Google Scholar 

  • Ben-Menahem A, Aboodi E (1971) Tectonic patterns in the northern Red Sea region. J Geophys Res 76(11):2674–2689

    Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambr Res 28(1):1–74

    Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316(6023):33–37

    Google Scholar 

  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F (2012) World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids. In EGU general assembly conference abstracts 14:11091

  • Bosworth W (2015) Geological evolution of the Red Sea: historical background, review, and synthesis. In: Rasul NM, Stewart ICF (eds) The Red Sea. Springer, Berlin, pp 45–78

    Google Scholar 

  • Bosworth W, Durocher S (2017) Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: non-uniform regional extension and its relation to inherited structures and local plate motion. J Afr Earth Sci 136:136–147

    Google Scholar 

  • Bosworth W, Sultan M, Stern RJ, Arvidson RE, Shore P, Becker R (1993) Nature of the Red Sea crust: a controversy revisited: comment and reply. Geology 21(6):574–576

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43(1–3):334–378

    Google Scholar 

  • Bridges DL, Gao SS (2006) Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska. Earth Planet Sci Lett 245(1–2):408–415

    Google Scholar 

  • Buck R, Martinez F, Steckler MS, Cochran JR (1988) Thermal consequences of lithospheric extension: pure and simple. Tectonics 7:213–234

    Google Scholar 

  • Chang SJ, Van der Lee S (2011) Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planet Sci Lett 302(3–4):448–454

    Google Scholar 

  • Chernick MR (1999) Bootstrap methods: a practitioner’s guide, Wiley Series in Probability and Statistics. Wiley-Interscience Publication, London

    Google Scholar 

  • Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Google Scholar 

  • Cochran JR (1983) A model for development of Red Sea. Aapg Bull 67(1):41–69

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6(3):34

    Google Scholar 

  • Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting. Geol Soc Lond Special Publ 282(1):265–289

    Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153(1–4):25–53

    Google Scholar 

  • Daradich A, Mitrovica JX, Pysklywec RN, Willett SD, Forte AM (2003) Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology 31(10):901–904

    Google Scholar 

  • Davies JH (2013) Global map of solid Earth surface heat flow. Geochem Geophys Geosyst 14(10):4608–4622

    Google Scholar 

  • Dyment J, Tapponnier P, Afifi AM, Zinger MA, Franken D, Muzaiyen E (2013) A new seafloor spreading model of the Red Sea: magnetic anomalies and plate kinematics. American Geophysical Union, Fall Meeting, abstract #T21A-2512

  • Edrik M, Kamer Y, Demircioğlu M, Şeşetyan K (2012) 23 October 2011 Van (Turkey) earthquake. Nat Hazards 64:651–665

    Google Scholar 

  • Ehrhardt A, Hübscher C (2015) The northern Red Sea in transition from rifting to drifting-lessons learned from ocean deeps. In: Rasul NM, Stewart ICF (eds) The Red Sea. Springer, Berlin, pp 99–121

    Google Scholar 

  • El-Isa Z, Shanti A (1989) Seismicity and tectonics of the Red Sea and western Arabia. Geophys J Int 97(3):449–457

    Google Scholar 

  • El Khrepy S, Koulakov I, Al-Arifi N (2016a) Crustal and uppermost mantle structure beneath the continental rifting area of the Gulf of Suez from earthquake tomography. Tectonophysics 668:92–104

    Google Scholar 

  • El Khrepy S, Koulakov I, Al-Arif N, Petrunin AG (2016b) Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data. Universitätsbibliothek Johann Christian Senckenberg, Frankfurt am Main

    Google Scholar 

  • El-Bohoty M, Brimich L, Saleh A, Saleh S (2012) Comparative study between the structural and tectonic situation of the Southern Sinai and the Red Sea, Egypt, as deduced from magnetic, gravity and seismic data. Contrib Geophys Geod 42(4):357–388

    Google Scholar 

  • El-Nader IA, Hussein HM (2018) The present-day active deformation in the central and northern parts of the Gulf of Suez area, Egypt, from earthquake focal mechanism data. Nat Hazards 92(3):1355–1369

    Google Scholar 

  • Freund R, Garfunkel Z, Zak I, Goldberg M, Weissbrod T, Derin B, Bender F, Wellings FE, Girdler RW (1970) The shear along the Dead Sea rift. Philos Trans R Soc Lond Ser A Math Phys Sci 267:107–130

    Google Scholar 

  • Garson MS, Krs M (1976) Geophysical and geological evidence of the relationship of Red Sea transverse tectonics to ancient fractures. Geol Soc Am Bull 87(2):169–181

    Google Scholar 

  • Gaulier JM, Le Pichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics 153(1–4):55–88

    Google Scholar 

  • Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth Sci Rev 45(1–2):1–44

    Google Scholar 

  • Girdler RW, Underwood M (1985) The evolution of early oceanic lithosphere in the southern Red Sea. Tectonophysics 116(1–2):95–108

    Google Scholar 

  • Gomez F, Nemer T, Tabet C, Khawlie M, Meghraoui M, Barazangi M (2007) Strain partitioning of active transpression within the Lebanese restraining bend of the Dead Sea Fault (Lebanon and SW Syria). Geol Soc Lond Spec Publ 290(1):285–303

    Google Scholar 

  • Görgün E (2013) Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van-Erciş, Turkey earthquake. Tectonophysics 603:213–221

    Google Scholar 

  • Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial valley from 23 N to 28 N: time and space evolution of neo-oceanic structures. Tectonophysics 153(1–4):1–23

    Google Scholar 

  • Gutenberg B, Richter CF (1941) Seismicity of the Earth. Geol Soc Am Sp Pap 34:1–133

    Google Scholar 

  • Joffe S, Garfunkel Z (1987) Plate kinematics of the circum Red Sea—a re-evaluation. Tectonophysics 141(1–3):5–22

    Google Scholar 

  • Kalyoncuoglu UY, Elitok Ö, Dolmaz MN (2013) Tectonic implications of spatial variation of b-values and heat flow in the Aegean region. Mar Geophys Res 34(1):59–78

    Google Scholar 

  • Kalyoncuoğlu ÜY, Elitok Ö, Dolmaz MN, Anadolu NC (2011) Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. J Geodyn 52(1):70–82

    Google Scholar 

  • Kanamori H, Brodsky EE (2001) The physics of earthquakes. Phys Today 54(6):34–40

    Google Scholar 

  • Khan PK (2005) Mapping of b-value beneath the Shillong Plateau. Gondwana Res 8(2):271–276

    Google Scholar 

  • Khan PK, Chakraborty PP (2007) The seismic b-value and its correlation with Bouguer gravity anomaly over the Shillong Plateau area: tectonic implications. J Asian Earth Sci 29(1):136–147

    Google Scholar 

  • LaBrecque JL, Zitellini N (1985) Continuous sea-floor spreading in Red Sea: an alternative interpretation of magnetic anomaly pattern. AAPG Bull 69(4):513–524

    Google Scholar 

  • Lei X (2003) How do asperities fracture? An experimental study of unbroken asperities. Earth Planet Sci Lett 213(3–4):347–359

    Google Scholar 

  • Ligi M, Bonatti E, Bosworth W, Cai Y, Cipriani A, Palmiotto C, Ronca S, Seyler M (2018) Birth of an ocean in the Red Sea: oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res 54:150–160

    Google Scholar 

  • Lolli B, Gasperini P, Vannucci G (2014) Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale. Geophys J Int 199(2):805–828

    Google Scholar 

  • Lucazeau F (2019) Analysis and mapping of an updated terrestrial heat flow data set. Geochem Geophys Geosyst 20(8):4001–4024

    Google Scholar 

  • Maden N, Öztürk S (2015) Seismic b-values, bouguer gravity and heat flow data beneath Eastern Anatolia, Turkey: tectonic implications. Surv Geophys 36(4):549–570

    Google Scholar 

  • Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai Block: implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238(1–2):217–224

    Google Scholar 

  • Mart Y, Hall JK (1984) Structural trends in the northern Red Sea. J Geophys Res Solid Earth 89(B13):11352–11364

    Google Scholar 

  • Mart Y, Horowitz A (1981) The tectonics of the Timna region in southern Israel and the evolution of the Dead Sea Rift. Tectonophysics 79(3–4):165–199

    Google Scholar 

  • Mart Y, Rabinowitz PD (1986) The northern red sea and the dead sea rift. Tectonophysics 124(1–2):85–113

    Google Scholar 

  • McNutt SR (2005) Volcanic seismology. Annu Rev Earth Planet Sci 32:461–491

    Google Scholar 

  • Meyer B, Saltus R, Chulliat A (2017) EMAG2: earth magnetic anomaly grid (2-arc-minute resolution) version 3. National Centers for Environmental Information, NOAA, Model, Asheville

    Google Scholar 

  • Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139

    Google Scholar 

  • Mitchell NC, Stewart IC (2018) The modest seismicity of the northern Red Sea rift. Geophys J Int 214(3):1507–1523

    Google Scholar 

  • Mogi K (1963) Some discussions on aftershocks, foreshocks, and earthquake swarms—the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. 3. Bull Earthquake Res Inst Tokyo 41:615–658

    Google Scholar 

  • Mogi K (1967) Effect of the intermediate principal stress on rock failure. J Geophys Res 72(20):5117–5131

    Google Scholar 

  • Mousavi SM (2017a) Mapping seismic moment and b-value within the continental collision orogenic-belt region of the Iranian Plateau. J Geodyn 103:26–41

    Google Scholar 

  • Mousavi SM (2017b) Spatial variation in the frequency–magnitude distribution of earthquakes under the tectonic framework in the Middle East. J Asian Earth Sci 147:193–209

    Google Scholar 

  • Pamukçu O (2016) Geodynamic assessment of Eastern Mediterranean region: a joint gravity and seismic b value approach. Arab J Geosci 9(5):360

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117(B4):B04406

    Google Scholar 

  • Rihm R, Makris J, Möller L (1991) Seismic surveys in the Northern Red Sea: asymmetric crustal structure. Tectonophysics 198(2–4):279–295

    Google Scholar 

  • Saleh S, Salk M, Pamukçu O (2013) Estimating Curie point depth and heat flow map for northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data. Pure Appl Geophys 170(5):863–885

    Google Scholar 

  • Sánchez JJ, McNutt SR, Power JA, Wyss M (2004) Spatial variations in the frequency–magnitude distribution of earthquakes at Mount Pinatubo Volcano. Bull Seismol Soc Am 94(2):430–438

    Google Scholar 

  • Sandwell D, Garcia E, Soofi K, Wessel P, Chandler M, Smith WH (2013) Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899

    Google Scholar 

  • Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67

    Google Scholar 

  • Scholz CH (1968) Experimental study of the fracturing process in brittle rock. J Geophys Res 73(4):1447–1454

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1 Stationarity of b values. J Geophys Res Solid Earth 109(B12):B12308

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72(5):1677–1687

    Google Scholar 

  • Sobiesiak M, Meyer U, Schmidt S, Götze HJ, Krawczyk CM (2007) Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. J Geophys Res Solid Earth 112(B12):B12308

    Google Scholar 

  • Stein M, Goldstein SL (1996) From plume head to continental lithosphere in the Arabian-Nubian shield. Nature 382(6594):773–778

    Google Scholar 

  • Stern RJ (1994) Neoproterozoic (900–550 Ma) arc assembly and continental collision in the East African Orogen. Ann Rev Earth Planet Sci 22:319–351

    Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101(1–2):29–67

    Google Scholar 

  • Stern RJ, Johnson PR (2019) Constraining the opening of the Red Sea: evidence from the neoproterozoic margins and cenozoic magmatism for a volcanic rifted margin. In: Rasul NM, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, Cham, pp 53–79

    Google Scholar 

  • Sultan M, Becker R, Arvidson RE, Shore P, Stern RJ, El Alfy Z, Guinness EA (1992) Nature of the Red Sea crust: a controversy revisited. Geology 20(7):593–596

    Google Scholar 

  • Tapponnier P, Dyment J, Zinger MA, Franken D, Afifi AM, Wylie A, Ali HG, Hanbal I (2013) Revisiting seafloor-spreading in the Red Sea: basement nature, transforms and ocean-continent boundary, American Geophysical Union, Fall Meeting 2013, San Francisco, CA, 9–13 Dec, abstract #T12B-04

  • Urbancic TI, Trifu CI, Long JM, Young RP (1992) Space-time correlations of b values with stress release. Pure Appl Geophys 139(3–4):449–462

    Google Scholar 

  • Wang JH (1988) b values of shallow earthquakes in Taiwan. Bull Seismol Soc Am 78(3):1243–1254

    Google Scholar 

  • Warren NW, Latham GV (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75(23):4455–4464

    Google Scholar 

  • Wdowinski S, Bock Y, Baer G, Prawirodirdjo L, Bechor N, Naaman S, Knafo R, Forrai Y, Melzer Y (2004) GPS measurements of current crustal movements along the Dead Sea Fault. J Geophys Res Solid Earth 109(B5):B05403

    Google Scholar 

  • Wessel P, Smith WHF (1995) New version of the generic mapping tools released. Eos Trans Am Geophys Uninon 76:329

    Google Scholar 

  • Wiemer S, Zuňiga FR (1994) ZMAP - A software package to analyze seismicity. EOS, Trans., Fall Meeting. 75. AGU, p. 456

  • Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res Solid Earth 104(B6):13135–13151

    Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western US and Japan. Bull Seism Soc Am 90:859–869

    Google Scholar 

  • Wiemer S, McNutt SR, Wyss M (1998) Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California. Geophys J Int 134:409–421

    Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astron Soc 31(4):341–359

    Google Scholar 

  • Wyss M, Stefansson R (2006) Nucleation points of recent mainshocks in southern Iceland, mapped by b-values. Bull Seismol Soc Am 96(2):599–608

    Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No. RG-1441-320. Generic Mapping Tools developed by Wessel and Smith (1995) were used for most data mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali K. Abdelfattah.

Ethics declarations

Conflict of interest

The authors declare no potential conflict or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfattah, A.K., Jallouli, C., Qaysi, S. et al. Crustal Stress in the Northern Red Sea Region as Inferred from Seismic b-values, Seismic Moment Release, Focal Mechanisms, Gravity, Magnetic, and Heat Flow Data. Surv Geophys 41, 963–986 (2020). https://doi.org/10.1007/s10712-020-09602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09602-8

Keywords

Navigation