Coastal Sea Level and Related Fields from Existing Observing Systems

Abstract

We review the status of current sea-level observing systems with a focus on the coastal zone. Tide gauges are the major source of coastal sea-level observations monitoring most of the world coastlines, although with limited extent in Africa and part of South America. The longest tide gauge records, however, are unevenly distributed and mostly concentrated along the European and North American coasts. Tide gauges measure relative sea level but the monitoring of vertical land motion through high-precision GNSS, despite being essential to disentangle land and ocean contributions in tide gauge records, is only available in a limited number of stations. (25% of tide gauges have a GNSS station at less than 10 km.) Other data sources are new in situ observing systems fostered by recent progress in GNSS data processing (e.g., GPS reflectometry, GNSS-towed platforms) and coastal altimetry currently measuring sea level as close as 5 km from the coastline. Understanding observed coastal sea level also requires information on various contributing processes, and we provide an overview of some other relevant observing systems, including those on (offshore and coastal) wind waves and water density and mass changes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Courtesy of J. Montano

Fig. 9
Fig. 10

References

  1. Andersen OB, Nielsen K, Knudsen P, Hughes CW, Bingham R, Fenoglio-Marc L, Gravelle M, Kern M, Polo SP (2018) Improving the coastal mean dynamic topography by geodetic combination of tide gauge and satellite altimetry. Mar Geod. https://doi.org/10.1080/01490419.2018.1530320

    Article  Google Scholar 

  2. André BG, Martín Míguez B, Ballu V et al (2013) Measuring sea level with GPS-equipped buoys: a multi-instruments experiment at Aix Island. Int Hyrographic Rev 10:27–38

    Google Scholar 

  3. Apotsos A, Raubenheimer B, Elgar S, Guza RT, Smith JA (2007) Effects of wave rollers and bottom stress on wave setup. J Geophys Res Oceans. https://doi.org/10.1029/2006JC003549

    Article  Google Scholar 

  4. Ardhuin F, Drake TG, Herbers THC (2002) Observations of wave-generated vortex ripples on the North Carolina continental shelf. J Geophys Res 107:C10. https://doi.org/10.1029/2001JC000986

    Article  Google Scholar 

  5. Ardhuin F, Devaux E, Pineau-Guillou L (2010) Observation et prévision des seiches sur la côte atlantique française. Actes des Xèmes Journées Génie côtier-Génie civil, Les Sables d’Olonne. https://doi.org/10.5150/jngcgc.2010.001-a

    Article  Google Scholar 

  6. Ardhuin F, Rascle N, Chapron B, Gula J, Molemaker J, Gille ST, Menemenlis D, Rocha C (2017) Small scale currents have large effects on wind wave heights. J Geophys Res 122(C6):4500–4517. https://doi.org/10.1002/2016JC012413

    Article  Google Scholar 

  7. Ardhuin F, Aksenov Y, Benetazzo A, Bertino L, Brandt P, Caubet E, Chapron B, Collard F, Cravatte S, Dias F, Dibarboure G, Gaultier L, Johannessen J, Korosov A, Manucharyan G, Menemenlis D, Menendez M, Monnier G, Mouche A, Nouguier F, Nurser G, Rampal P, Reniers A, Rodriguez E, Stopa J, Tison C, Tissier M, Ubelmann C, van Sebille E, Vialard J, Xie J (2018) Measuring currents, ice drift, and waves from space: the sea surface kinematics multiscale monitoring (SKIM) concept. Ocean Sci 14:337–354. https://doi.org/10.5194/os-2017-65

    Article  Google Scholar 

  8. Ballu V, Bouin M-N, Calmant S et al (2010) Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J Geod 84:65. https://doi.org/10.1007/s00190-009-0345-y

    Article  Google Scholar 

  9. Ballu V, Testut L, Poirier E et al (2017) Mapping the sealevel for altimetry calibration purpose using the future PAMELi marine ASV around the Aix Island sea-level observatory. In: 2017 Ocean surface topography science team meeting, Miami

  10. Battjes JA (1982) A case study of wave height variations due to currents in a tidal entrance. Coast Eng 6:47–57

    Article  Google Scholar 

  11. Bergmann I, Dobslaw H (2012) Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J Geophys Res. https://doi.org/10.1029/2012jc007872

    Article  Google Scholar 

  12. Bertin X, de Bakker A, van Dongeren A, Coco G, Andre G, Ardhuin F, Bonneton P, Bouchette F, Castelle B, Crawford W, Deen M, Dodet G, Guerin T, Leckler F, McCall R, Muller H, Olabarrieta M, Ruessink G, Sous D, Stutzmann E, Tissier M (2018) Infragravity waves: from driving mechanisms to impacts. Earth Sci Rev 177:774–799. https://doi.org/10.1016/j.earscirev.2018.01.002

    Article  Google Scholar 

  13. Birol F, Fuller N, Lyard F, Cancet M, Niño F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M, Leger F (2016) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res. https://doi.org/10.1016/j.asr.2016.11.005

    Article  Google Scholar 

  14. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: So strong, the oceans fell. Geophys Res Lett. https://doi.org/10.1029/2012gl053055

    Article  Google Scholar 

  15. Bonnefond P, Exertier P, Laurain O et al (2003a) Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica special issue: Jason-1 calibration/validation. Mar Geod 26:261–284. https://doi.org/10.1080/714044521

    Article  Google Scholar 

  16. Bonnefond P, Exertier P, Laurain O et al (2003b) Leveling the sea surface using a GPS-catamaran special issue: Jason-1 calibration/validation. Mar Geod 26:319–334. https://doi.org/10.1080/714044524

    Article  Google Scholar 

  17. Born GH, Michael PE, Axelrad P et al (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res Ocean 99:24517–24526. https://doi.org/10.1029/94JC00920

    Article  Google Scholar 

  18. Bouin M-N, Ballu V, Calmant S et al (2009a) A kinematic GPS methodology for sea surface mapping. Vanuatu J Geod 83:1203. https://doi.org/10.1007/s00190-009-0338-x

    Article  Google Scholar 

  19. Bouin M-N, Ballu V, Calmant S, Pelletier B (2009b) Improving resolution and accuracy of mean sea surface from kinematic GPS, Vanuatu subduction zone. J Geod 83:1017. https://doi.org/10.1007/s00190-009-0320-7

    Article  Google Scholar 

  20. Boutin J, Vergely JL, Marchand S, D’Amico F, Hasson A, Kolodziejczyk N, Reul N, Reverdin G, Vialard J (2018) New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sens Environ 214:115–134. https://doi.org/10.1016/j.rse.2018.05.022

    Article  Google Scholar 

  21. Bradshaw E, Rickards L, Aarup T (2015) Sea level data archaeology and the Global Sea Level Observing System (GLOSS). Geo Res J 6:9–16. https://doi.org/10.1016/j.grj.2015.02.005

    Article  Google Scholar 

  22. Brewin RJW, de Mora L, Billson O, Jackson T, Russell P, Brewin TG, Shutler JD, Miller PI, Taylor BH, Smyth TJ, Fishwick JR (2017) Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar Coast Shelf Sci 196:276–289. https://doi.org/10.1016/j.ecss.2017.07.011

    Article  Google Scholar 

  23. Calafat FM, Wahl T, Lindsten F, Williams J, Frajka-Williams E (2018) Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat Commun 9:2571. https://doi.org/10.1038/s41467-018-04898-y

    Article  Google Scholar 

  24. Calzas M, Brachet C, Drezen C et al (2014) New technological development for cal/val activities. In: 2014 Ocean surface topography science team meeting. Lake Constance, Germany

  25. Cariolet J-M, Suanez S (2013) Runup estimations on a macrotidal sandy beach. Coast Eng 74:11–18

    Article  Google Scholar 

  26. Cartwright DE (1977) Oceanic tides. Rep Prog Phys 40:665–708

    Article  Google Scholar 

  27. Chambers DP, Bonin JA (2012) Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8:1–10. https://doi.org/10.5194/os-8-1-2012

    Article  Google Scholar 

  28. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31:L13310. https://doi.org/10.1029/2004GL020461

    Article  Google Scholar 

  29. Chambers DP, Cazenave A, Champollion N, Dieng H, Llovel W, Forsberg R, von Schuckmann K, Wada Y (2017) Evaluation of the global mean sea level budget between 1993 and 2014. Surv Geophys 38:309–327. https://doi.org/10.1007/s10712-016-9381-3

    Article  Google Scholar 

  30. Chen JL, Wilson CR, Tapley BD (2013) Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat Geosci 6:549–552. https://doi.org/10.1038/NGEO1829

    Article  Google Scholar 

  31. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  32. Cipollini P, Calafat FM, Jevrejeva S, Melet S, Prandi P (2017) Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys 38(1):33–57. https://doi.org/10.1007/s10712-016-9392-0

    Article  Google Scholar 

  33. Coco G, Senechal N, Rejas A, Bryan KR, Capo S, Parisot JP, Brown JA, MacMahan JHM (2014) Beach response to a sequence of extreme storms. Geomorphology 204:493–501

    Article  Google Scholar 

  34. Coulombier T, Ballu V, Pineau P et al (2018) PAMELi, un drone marin de surface au service de l’interdisciplinarité. Paralia 15:337–344. https://doi.org/10.5150/jngcgc.2018.038

    Article  Google Scholar 

  35. Dangendorf S, Marcos M, Woppelmann G, Conrad CP, Frederikse T, Riva R (2017) Reassessment of 20th century global mean sea level rise. PNAS. https://doi.org/10.1073/pnas.1616007114

    Article  Google Scholar 

  36. Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharro R, Fernandez J, Benveniste J (2017) CryoSat-2 performance along the german coasts. AdSR Special Issue CryoSat-2. https://doi.org/10.1016/j.asr.2017.12.018

  37. Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharroo R, Fernandes MJ, Benveniste J (2018) Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv Space Res 62(6):1371–1404. https://doi.org/10.1016/j.asr.2017.12.018

    Article  Google Scholar 

  38. Dodet G, Melet A, Ardhuin F, Almar R, Bertin X, Idier D, Pedredos R (in review) The contribution of wind generated waves to coastal sea level changes. Surv Geophys

  39. Donlon C, Rayner N, Robinson I, Poulter DJS, Casey KS, Vazquez-Cuervo J, Armstrong E, Bingham A, Arino O, Gentemann C et al (2007) The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213

    Article  Google Scholar 

  40. Donlon CJ, Casey KS, Robinson IS, Gentemann CL, Reynolds RW, Barton I, Arino O, Stark J, Rayner N, LeBorgne P, Poulter D, Vazquez-Cuervo J, Armstrong E, Beggs H, Llewellyn-Jones D, Minnett PJ, Merchant CJ, Evans R (2009) GODAE high-resolution sea surface temperature pilot project. Oceanography 22(3):34–45. https://doi.org/10.5670/oceanog.2009.64

    Article  Google Scholar 

  41. Dugan JP, Morris WD, Vierra KC, Piotrowski CC, Farruggia GJ, Campion DC (2001) Jetski-based nearshore bathymetric and current survey system. J Coast Res 17:900–908

    Google Scholar 

  42. Durand M, Fu L-L, Lettenmaier DP, Alsdorf DE, Rodriguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98:766–779. https://doi.org/10.1109/jproc.2010.2043031

    Article  Google Scholar 

  43. Durand F, Calmant S, Calzas M et al (2017) Geodetic survey of the freshwater front of the Ganges-Brahmaputra freshwater plume in the northern Bay of Bengal from Calnageo GNSS device. In: 2017 Ocean surface topography science team meeting

  44. Durand F, Piecuch C, Cirano M, Becker M, Papa F (in review) Runoff impact on coastal sea level. Surv Geophys

  45. Elgar S, Guza RT, Raubenheimer B, Herbers THC, Gallagher EL (1997) Spectral evolution of shoaling and breaking waves on a barred beach. J Geophys Res Oceans 102(C7):15797–15805

    Article  Google Scholar 

  46. Fantino M, Marucco G, Mulassano P, Pini M (2008) Performance analysis of MBOC, AltBOC and BOC modulations in terms of multipath effects on the carrier tracking loop within GNSS receivers. In: IEEE/ION position, location and navigation symposium. https://doi.org/10.1109/plans.2008.4570092

  47. Fasullo JT, Boening C, Landerer FW, Nerem RS (2013) Australia’s unique influence on global sea level in 2010–2011. Geophys Res Lett 40:4368–4373. https://doi.org/10.1002/grl.50834

    Article  Google Scholar 

  48. Fenoglio-Marc L, Becker M, Rietbroeck R, Kusche J, Grayek S, Stanev E (2012) Water mass variation in Mediterranean and Black Sea. J Geodyn. https://doi.org/10.1016/j.jog.2012.04.001

    Article  Google Scholar 

  49. Fiedler JW, Brodie KL, McNinch JE, Guza RT (2015) Observations of runup and energy flux on a low-slope beach with high-energy, long-period ocean swell. Geophys Res Lett 42:9933–9941. https://doi.org/10.1002/2015GL066124

    Article  Google Scholar 

  50. Foster JH, Carter GS, Merrifield MA (2009) Ship-based measurements of sea surface topography. Geophys Res Lett 36:L11605. https://doi.org/10.1029/2009GL038324

    Article  Google Scholar 

  51. Fund F, Perosanz F, Testut L, Loyer S (2013) An Integer Precise Point Positioning technique for sea surface observations using a GPS buoy. Adv Space Res 51:1311–1322. https://doi.org/10.1016/j.asr.2012.09.028

    Article  Google Scholar 

  52. Gemmrich J, Thomas B, Bouchard R (2011) Observational changes and trends in northeast Pacific wave records. Geophys Res Lett 38:L22601. https://doi.org/10.1029/2011GL049518

    Article  Google Scholar 

  53. Gommenginger CP, Srokosz MA, Challenor PG, Cotton PD (2003) Measuring ocean wave period with satellite altimeters: a simple empirical model. Geophys Res Lett 30(22):2150. https://doi.org/10.1029/2003GL017743

    Article  Google Scholar 

  54. Gulev SK, Grigorieva V, Sterl A, Woolf D (2003) Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J Geophys Res 108(C7):3236

    Article  Google Scholar 

  55. Guza RT, Thornton EB (1981) Wave set-up on a natural beach. J Geophys Res Oceans 86(C5):4133–4137

    Article  Google Scholar 

  56. Haines B, Desai S, Dodge A et al (2017) Connecting Jason-3 to the long-term sea level record: results from harvest and regional campaigns. In: 2017 Ocean surface topography science team meeting

  57. Hauser D, Tison C, Amiot T, Delaye L, Corcoral N, Castillan P (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55(5):3000–3014

    Article  Google Scholar 

  58. Hedley J, Roelfsema C, Koetz B, Phinn S (2012) Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens Environ 120:145–155. https://doi.org/10.1016/j.rse.2011.06.028

    Article  Google Scholar 

  59. Hein GW, Landau H, Blomenhofer H (1990) Determination of instantaneous sea surface, wave heights, and ocean currents using satellite observations of the global positioning system. Mar Geod 14:217–224. https://doi.org/10.1080/15210609009379664

    Article  Google Scholar 

  60. Hogarth P (2014) Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets (August 2014). J Geophys Res Oceans 119:7645–7659. https://doi.org/10.1002/2014JC009976

    Article  Google Scholar 

  61. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the Permanent Service for Mean Sea Level. J Coast Res 29:493–504

    Google Scholar 

  62. Holman RA, Stanley J (2007) The history and technical capabilities of Argus. Coast Eng 54(6–7):477–491

    Article  Google Scholar 

  63. Holman R, Plant N, Holland T (2013) cBathy: a robust algorithm for estimating nearshore bathymetry. J Geophys Res Oceans 118(5):2595–2609

    Article  Google Scholar 

  64. Hughes CW, Tamisiea ME, Bingham RJ, Williams J (2012) Weighing the ocean: using a single mooring to measure changes in the mass of the ocean. Geophys Res Lett 39:L17602. https://doi.org/10.1029/2012GL052935

    Article  Google Scholar 

  65. Intergovernmental Oceanographic Commission (IOC) (1985) Manual on sea level measurement and interpretation (volume I: basic procedures). Intergovernmental Oceanographic Commission Manuals and Guides, vol 14. UNESCO, Paris. http://www.psmsl.org/train_and_info/training/manuals/ioc_14i.pdf. Accessed July 2018

  66. Jensen L, Rietbroek R, Kusche J (2013) Land water contribution to sea level from GRACE and Jason-1 measurements. J Geophys Res Oceans 118:212–226. https://doi.org/10.1002/jgrc.20058

    Article  Google Scholar 

  67. Johnson GF, Chambers DP (2013) Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: ocean Circulation Implications. J Geophys Res Oceans 118:1–13. https://doi.org/10.1002/jgrc.20307

    Article  Google Scholar 

  68. Köhler J, Serra N, Bryan FO, Johnson BK, Stammer D (2018) Mechanisms of mixed-layer salinity seasonal variability in the Indian Ocean. J Geophys Res Oceans 123:466–496. https://doi.org/10.1002/2017JC013640

    Article  Google Scholar 

  69. Landerer FW, Wiese DN, Bentel K, Boening C, Watkins MM (2015) North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys Res Lett 42:8114–8121. https://doi.org/10.1002/2015gl065730

    Article  Google Scholar 

  70. Larson KM, Ray RD, Nievinski FG, Freymueller JT (2013) The Accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci Remote Sens Lett 10:1200–1204

    Article  Google Scholar 

  71. Laurichesse D, Mercier F, Berthias J-P et al (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56:135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x

    Article  Google Scholar 

  72. Lemoine FG, Luthcke SB, Rowlands DD, Chinn DS, Klosko SM, Cox CM (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools. International Association of Geodesy, vol 130. Springer, Berlin, pp 231–236

    Google Scholar 

  73. Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. https://doi.org/10.1029/2008GL036010

    Article  Google Scholar 

  74. Lowe RJ, Falte JL, Koseff JR, Monismith SG, Atkinson MJ (2007) Spectral wave flow attenuation within submerged canopies: implications for wave energy dissipation. J Geophys Res. https://doi.org/10.1029/2006jc003605

    Article  Google Scholar 

  75. Magne R, Belibassakis K, Herbers THC, Ardhuin F, O’Reilly WC, Rey V (2007) Evolution of surface gravity waves over a submarine canyon. J Geophys Res. https://doi.org/10.1029/2005jc003035

    Article  Google Scholar 

  76. Makowski JK, Chambers DP, Bonin JA (2015) Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the Southern Indian Ocean. J Geophys Res Oceans 120:4245–4259. https://doi.org/10.1002/2014jc010575

    Article  Google Scholar 

  77. Marcos M, Puyol B, Wöppelmann G, Herrero C, García-Fernández MJ (2011) The long sea level record at Cadiz (southern Spain) from 1880 to 2009. J Geophys Res 116:C12003. https://doi.org/10.1029/2011JC007558

    Article  Google Scholar 

  78. Martín Míguez B, Le Roy R, Wöppelmann G (2008) The use of radar tide gauges to measure variations in sea level along the French Coast. J Coast Res 24:61–68

    Article  Google Scholar 

  79. Martín Míguez B, Testut L, Woppelmann G (2012) Performance of modern tide gauges: towards mm-level accuracy. Sci Mar 76:221–228. https://doi.org/10.3989/scimar.03618.18a

    Article  Google Scholar 

  80. Masselink G, Scott T, Poate T, Russell P, Davidson M, Conley D (2016) The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf Proc Land 41(3):378–391

    Article  Google Scholar 

  81. Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1867

    Article  Google Scholar 

  82. Meade RH, Emery KO (1971) Sea level as affected by river runoff, eastern United States. Science 173(3995):425–428

    Article  Google Scholar 

  83. Mecklenburg S, Drusch M, Kaleschke L, Rodriguez-Fernandez N, Reul N, Kerr Y, Font J, Martin-Neira M, Oliva R, Daganzo-Eusebio E, Grant JP, Sabia R, Macelloni G, Rautiainen K, Fauste J, de Rosnay P, Munoz-Sabater J, Verhoest N, Lievens H, Delwart S, Crapolicchio R, de la Fuente A, Kornberg M (2016) ESA’s Soil Moisture and Ocean Salinity mission: from science to operational applications. Remote Sens Environ 180:3–18. https://doi.org/10.1016/j.rse.2015.12.025

    Article  Google Scholar 

  84. Meinig C, Stalin SE, Nakamura AI, Milburn HB (2005) Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA, Pacific Marine Environmental Laboratory (PMEL), pp 1–15

  85. Meyssignac B, Piecuch CG, Merchant CJ, Racault M-F, Palanisamy H, MacIntosh C, Sathyendranath S, Brewin R (2017) Causes of the regional variability in observed sea level, sea surface temperature and ocean color over the period 1993-2011. Surv Geophys 38:187–215. https://doi.org/10.1007/s10712-016-9383-1

    Article  Google Scholar 

  86. Monismith SG, Rogers JS, Koweek D, Dunbar RB (2015) Frictional wave dissipation on a remarkably rough reef. Geophys Res Lett 112:4063–4071. https://doi.org/10.1002/2015GL063804

    Article  Google Scholar 

  87. Munk WH, Traylor MA (1947) Refraction of ocean waves: a process linking underwater topography to beach erosion. J Geol 51:1–26

    Article  Google Scholar 

  88. Neale J, Harmon N, Srokosz M (2015) Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest. J Geophys Res Oceans 120:6474–6491. https://doi.org/10.1002/2015JC010891

    Article  Google Scholar 

  89. Okihiro M, Guza RT, Seymour RJ (1993) Excitation of seiche observed in a small harbor. J Geophys Res 98(C10):18201–18211

    Article  Google Scholar 

  90. Pattiaratchi C, Woo LM, Thomson PG, Hong KK, Stanley D (2017) Ocean glider observations around Australia. Oceanography 30(2):90–91. https://doi.org/10.5670/oceanog.2017.226

    Article  Google Scholar 

  91. Penna NT, Morales Maqueda MA, Martin I et al (2018) Sea surface height measurement using a GNSS wave glider. Geophys Res Lett 45:5609–5616. https://doi.org/10.1029/2018GL077950

    Article  Google Scholar 

  92. Pérez Gómez B, Donato V, Hibbert A, Marcos M, Raicich F, Hammarklint T, Testut L, Annunziato A, Westbrook G, Gyldenfeldt A, Gorringe P (2017) Recent efforts for an increased coordination of sea level monitoring in Europe: EuroGOOS Tide Gauge Task Team. In: International WCRP/IOC conference 2017: regional sea level changes and costal impacts, New York

  93. Piecuch CG, Quinn KJ, Ponte RM (2013) Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophys Res Lett 40:3106–3110. https://doi.org/10.1002/grl.50549

    Article  Google Scholar 

  94. Piecuch CG, Bitterman K, Kemp AC, Ponte RM, Little CM, Engelhart SE, Lentz SJ (2018a) River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1805428115

    Article  Google Scholar 

  95. Piecuch CG, Landerer FW, Ponte RM (2018b) Tide gauge records reveal improved processing of gravity recovery and climate experiment time-variable mass solutions over the coastal ocean. Geophys J Int 214:1401–1412. https://doi.org/10.1093/gji/ggy207

    Article  Google Scholar 

  96. Pineau-Guillou L, Ardhuin F, Bouin M-N, Redelsperger J-L, Chapron B, Bidlot J, Quilfen Y (2018) Strong winds in a coupled wave-atmosphere model during a north atlantic storm event: evaluation against observations. Q J R Meteorol Soc 144:317–332. https://doi.org/10.1002/qj.3205

    Article  Google Scholar 

  97. Pleskachevsky A, Dobrynin M, Babanin AV, Günther H, Stanev E (2011) Turbulent mixing due to surface waves indicated by remote sensing of suspended particulate matter and its implementation into coupled modeling of waves, turbulence, and circulation. J Phys Oceanogr 41:708–724. https://doi.org/10.1175/2010JPO4328.1

    Article  Google Scholar 

  98. Poate TG, McCall RT, Masselink G (2016) A new parameterisation for runup on gravel beaches. Coast Eng 117:176–190. https://doi.org/10.1016/j.coastaleng.2016.08.003

    Article  Google Scholar 

  99. Polster A, Fabian M, Villinger H (2009) Effective resolution and drift of Paroscientific pressure sensors derived from longterm seafloor measurements. Geochem Geophy Geosyst 10:Q08008. https://doi.org/10.1029/2009GC002532

    Article  Google Scholar 

  100. Ponte RM, Piecuch CG (2014) Interannual bottom pressure signals in the Australian-Antarctic and Bellingshausen Basins. J Phys Ocean 44:1456–1465. https://doi.org/10.1175/JPO-D-13-0223.1

    Article  Google Scholar 

  101. Pugh D, Woodworth PL (2014) Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139235778. ISBN 9781139235778

    Google Scholar 

  102. Queffeulou (2013) https://ftp.space.dtu.dk/pub/Ioana/papers/s221_1quef.pdf

  103. Quilfen Y, Chapron B, Collard F, Serre M (2004) Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters. Mar Geod 27(3–4):535–549. https://doi.org/10.1080/01490410490902025

    Article  Google Scholar 

  104. Raubenheimer B (2002) Observations and predictions of fluid velocities in the surf and swash zones. J Geophys Res Oceans 107(C11):11-1–11-7

    Article  Google Scholar 

  105. Raubenheimer B, Guza RT, Elgar S (2001) Field observations of wave‐driven setdown and setup. J Geophys Res Oceans 106(C3):4629–4638

    Article  Google Scholar 

  106. Rawat A, Ardhuin F, Ballu V, Crawford W, Corela C, Aucan J (2014) Infragravity waves across the oceans. Geophys Res Lett 41:7957–7963. https://doi.org/10.1002/2014GL061604

    Article  Google Scholar 

  107. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys 118:4570–4584

    Google Scholar 

  108. Reinking J, Härting A, Bastos L (2012) Determination of sea surface height from moving ships with dynamic corrections. J Geod Sci 2:172–187. https://doi.org/10.2478/v10156-011-0038-3

    Article  Google Scholar 

  109. Rietbroek R, Brunnabend SE, Kusche J, Schröter J, Dahle C (2016) Revisiting the contemporary sea-level budget on global and regional scales. Proc Natl Acad Sci 113:1504–1509. https://doi.org/10.1073/pnas.1519132113

    Article  Google Scholar 

  110. Riva REM, Bamber JL, Lavallée DA, Wouters B (2010) Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys Res Lett 37:L19605. https://doi.org/10.1029/2010GL044770

    Article  Google Scholar 

  111. Rocken C, Kelecy TM, Born GH et al (1990) Measuring precise sea level from a buoy using the global positioning system. Geophys Res Lett 17:2145–2148. https://doi.org/10.1029/GL017i012p02145

    Article  Google Scholar 

  112. Rudnick DL, Zaba KD, Todd RE, Davis RE (2017) A climatology of the California Current System from a network of underwater gliders. Prog Oceanogr 154:64–106. https://doi.org/10.1016/j.pocean.2017.03.002

    Article  Google Scholar 

  113. Santamaría-Gómez A, Watson C (2017) Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS Solut 21(2):451–459. https://doi.org/10.1007/s10291-016-0537-x

    Article  Google Scholar 

  114. Santamaría-Gómez A, Gravelle M, Dangendorf S, Marcos M, Spada G, Wöppelmann G (2017) Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet Sci Lett 473:24–32

    Article  Google Scholar 

  115. Sasagawa G, Cook MJ, Zumberge MA (2016) Drift-corrected seafloor pressure observations of vertical deformation at Axial Seamount 2013–2014. Earth Space Sci 3:381–385. https://doi.org/10.1002/2016EA000190

    Article  Google Scholar 

  116. Save H, Bettadpur S, Tapley BD (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569. https://doi.org/10.1002/2016JB013007

    Article  Google Scholar 

  117. Senechal N, Abadie S, Ardhuin F, Bujan S, Capo S, Certain R, Coco G, Gallagher E, Garlan T, Masselink G, MacMahan J, Michallet H, Pedreros R, Reniers A, Rey V, Ruessink B, Russell P, Turner I (2011a) The ECORS-Truc Vert 2008 field experiment: extreme storm conditions over a three-dimensional morphology system in a macro-tidal environment. Ocean Dyn 61:2073–2098. https://doi.org/10.1007/s10236-011-0472-x

    Article  Google Scholar 

  118. Senechal N, Coco G, Bryan KR, Holman RA (2011b) Wave runup during extreme storm conditions. J Geophys Res 116:C07032. https://doi.org/10.1029/2010JC006819

    Article  Google Scholar 

  119. Sheremet A, Staples T, Ardhuin F, Suanez S, Fichaut B (2014) Observations of large infragravity wave runup at Banneg Island, France. Geophys Res Lett 41(3):976–982

    Article  Google Scholar 

  120. Spencer R, Foden PR, McGarry C, Harrison AJ, Vassie JM, Baker TF, Smithson MJ, Harangozo SA, Woodworth PL (1993) The ACCLAIM programme in the South Atlantic and southern oceans. Int Hydrographic Rev 70(1):7–21

    Google Scholar 

  121. Stephens S, Coco G, Bryan KR (2011) Numerical simulations of wave setup over barred beach profiles: implications for predictability. J Waterw Port Coast Ocean Eng. https://doi.org/10.1061/(asce)ww.1943-5460.0000076

    Article  Google Scholar 

  122. Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588. https://doi.org/10.1016/j.coastaleng.2005.12.005

    Article  Google Scholar 

  123. Talke SA, Kemp AC, Woodruff J (2018) Relative sea level, tides, and extreme water levels in Boston harbor from 1825 to 2018. J Geophys Res 123:3895–3914. https://doi.org/10.1029/2017JC013645

    Article  Google Scholar 

  124. Testut L, Wöppelmann G, Simon B, Téchiné P (2006) The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn 56:464–472. https://doi.org/10.1007/s10236-005-0056-8

    Article  Google Scholar 

  125. Tregoning P, Lambeck K, Ramillien G (2008) GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria. Aust Earth Planet Sci Lett 271:241–244

    Article  Google Scholar 

  126. Vignudelli S, Benveniste J, Birol F, FuLL, Picot N (in review) Satellite altimetry measurements of sea level in the coastal zone. Surv Geophys

  127. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229

    Article  Google Scholar 

  128. Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE. JGR Solid Earth 120:2648–2671. https://doi.org/10.1002/2014JB011547

    Article  Google Scholar 

  129. Watson C, Coleman R, White N et al (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in bass strait, Australia special issue: Jason-1 calibration/validation. Mar Geod 26:285–304. https://doi.org/10.1080/714044522

    Article  Google Scholar 

  130. Watson C, Coleman R, Handsworth R (2008) Coastal tide gauge calibration: a case study at Macquarie Island using GPS buoy techniques. J Coast Res 24:1071–1079. https://doi.org/10.2112/07-0844.1

    Article  Google Scholar 

  131. Watts DR, Kontoyiannis H (1990) Deep-ocean bottom pressure measurement: drift removal and performance. J Atmos Ocean Technol 7:296–306. https://doi.org/10.1175/1520-0426

    Article  Google Scholar 

  132. Weissman DE, Morey S, Bourassa M (2017) Studies of the effects of rain on the performance of the SMAP radiometer surface salinity estimates and applications to remote sensing of river plumes. In: IEEE international geoscience and remote sensing symposium (IGARSS), Fort Worth, TX, pp 1491–1494. https://doi.org/10.1109/igarss.2017.8127250

  133. Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502

    Article  Google Scholar 

  134. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual time scales. J Geophys Res 113:C06015. https://doi.org/10.1029/2007JC004517

    Article  Google Scholar 

  135. Woodworth PL, Blackman DL (2002) Changes in extreme high waters at Liverpool since 1768. Int J Climatol 22:697–714. https://doi.org/10.1002/joc.761

    Article  Google Scholar 

  136. Woodworth PL, Pugh DT, Bingley RM (2010) Long-term and recent changes in sea level in the Falkland Islands. J Geophys Res 115:C09025. https://doi.org/10.1029/2010JC006113

    Article  Google Scholar 

  137. Woodworth PL, Gravelle M, Marcos M, Woppelmann G, Hughes CW (2015) The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. J Geod 89:811–827. https://doi.org/10.1007/s00190-015-0817-1

    Article  Google Scholar 

  138. Woodworth PL, Hunter JR, Marcos M, Caldwell P, Menendez M, Haigh I (2017) Towards a global higher-frequency sea level dataset. Geosci Data J 3:50–59. https://doi.org/10.1002/gdj3.42

    Article  Google Scholar 

  139. Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Monserrat S, Merrifield MA (in review) Forcing factors causing sea level changes at the coast. Surv Geophys

  140. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92. https://doi.org/10.1002/2015RG000502

    Article  Google Scholar 

  141. Wöppelmann G, Pouvreau N, Simon B (2006) Brest sea level record: a time series construction back to the early eighteenth century. Ocean Dyn 56:487–497. https://doi.org/10.1007/s10236-005-0044-z

    Article  Google Scholar 

  142. Wöppelmann G, Martín Míguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57:396–406

    Article  Google Scholar 

  143. Wöppelmann G, Marcos M, Coulomb A, Martín Míguez B, Bonnetain P, Boucher C, Gravelle M, Simon B, Tiphaneau P (2014) Rescue of the historical sea level record of Marseille (France) from 1885 to 1988 and its extension back to 1849–1851. J Geod 88:869–885. https://doi.org/10.1007/s00190-014-0728-6

    Article  Google Scholar 

  144. Wouters B, Chambers DP (2010) Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2010.08.002

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marta Marcos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcos, M., Wöppelmann, G., Matthews, A. et al. Coastal Sea Level and Related Fields from Existing Observing Systems. Surv Geophys 40, 1293–1317 (2019). https://doi.org/10.1007/s10712-019-09513-3

Download citation

Keywords

  • Sea-level observations
  • Tide gauges
  • Coastal altimetry
  • GNSS
  • Wind waves
  • Ocean bottom pressure
  • Hydrography