Skip to main content

Sea Level Measurement

  • Chapter
  • First Online:
Measurement for the Sea

Abstract

A sea height for whom, for what? This question finds several answers in wide multidisciplinary scientific domains varying from in situ measurements to spatial altimetry and fields of studies linked mainly via oceanology and metrology. A water height is first an instantaneous measurement that feeds into the knowledge and calculation of sea level change, mean, lowest and highest, sea levels, tide amplitude and phase. These are all water level definitions that do not figure the same physical content. The definition of these levels can vary substantially depending on the purpose of the study. For this reason, several international organizations (IHO, GLOSS, and SONEL) aim to provide recommendations on some key definitions related to water levels. From former measurements to current observations, techniques evolved and constantly question the quality and the continuity of data. The large family of sensors measuring water level is populated by tide gauges, GNSS and radar altimeters onboard a satellite that provide a global geographical coverage and complement fixed-point observation.

Seawater height measurement structures the profile of important issues for the knowledge of marine environment. It is one of the essential ocean variables impacting and driving studies in ocean currents, climate change, engineering for the design of coastal installations and a large community engaged in operational oceanography. Its measurement and surface signature are a keystone in the calibration and validation of altimeters, coastal marine environment and ocean dynamic forecast and hindcast systems. Even further downstream in the field of applications, this ocean variable is a part of sustainable coastal economic activities, including applications in marine renewable energy. In this challenging frame, collected sea level data needed to be referenced in time and space (x, y, z, t), so that it is crucial to control the measurement and ensure the consistency of its monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DORIS beacons emit 2 frequencies. An on-board captor measures the Doppler shift between the signals to determine the distance between the satellite and the ground beacon.

  2. 2.

    GRACE mission measures the distance between the two satellites and allows estimation of Earth masses distribution, every month at 300 km wavelength resolution.

  3. 3.

    Barbier P., Edito 2010 August, Afnor Bivi Metrology

  4. 4.

    Radar altimeter delay and disturbances due to ionosphere (range error O [10-2]); dry and wet troposphere (respectively, with an average error budget of 7 10−2 m; 10−2 to 10−1 m); internal drift in the oscillator frequency (range error O [10-2]); land points perturbation with recent improvements in data post-treatments giving now access to SSH up to 3 km from the coast [23].

  5. 5.

    1835: a first demonstration of a tide gauges network, deployed on the coasts of the USA, Spain, Portugal, Belgium, the Netherlands, Denmark, Norway, England, Scotland, Ireland and France.

  6. 6.

    https://www.psmsl.org/; https://www.gloss-sealevel.org/; http://www.ioc-sealevelmonitoring.org/; http://uhslc.soest.hawaii.edu/; https://www.bodc.ac.uk/; https://www.sonel.org

Abbreviations

IOC:

Intergovernmental Oceanographic Commission (UNESCO)

GLOSS:

Global Sea Level Observing System

GNSS:

Global Navigation Satellite System

MSL:

Mean sea level

SLA:

Sea level anomaly

SSH:

Sea surface height

Rms:

Root mean square

LAT:

Lowest astronomical tide

HAT:

Highest astronomical tide

References

  1. Ayoub N, Barbot S, Benoit L, Bonnefond P, Brachet C, Calzas M, Conessa C, Drezen C, Fichen L, Froideval L, Garcia J, Giry C, Guillot A, Jan G, Lyard F, Magot L, Ternon P, Valladeau G (2018) Gironde campaign. CalVal OST-ST meeting, 2019

    Google Scholar 

  2. Bonnefond P, Exertier P, Laurain O, Jan G (2010) Absolute calibration of Jason-1 and Jason-2 altimeters in corsica during the formation flight phase. Mar Geod 33(S1):80–90

    Article  Google Scholar 

  3. Bonnefond P, Haines B, Watson C (2011) situ calibration and validation: a link from coastal to open-ocean altimetry. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin

    Google Scholar 

  4. Chupin C, Ballu V, Testut L, Tranchant Y-T, Calzas M et al (2020) Map-ping Sea surface height using new concepts of kinematic GNSS instruments. Rem Sens 12(16):2656. https://doi.org/10.3390/rs12162656.hal-02941779

    Article  ADS  Google Scholar 

  5. Jan G, Menard Y, Faillot M, Lyard F, Jeansou E, Bonnefond P (2004) Offshore absolute calibration of space borne radar altimeters. Mar Geod 27(3–4):615–629

    Article  Google Scholar 

  6. IOC The Global Sea-Level Observing System (GLOSS): implementation plan Merrifield M., Holgate S., Mitchum, G., Pérez B. Begoña, Rickards L., Schöne T., Woodworth P.L., Wöppelmann, G., 2012; IOC, Paris

    Google Scholar 

  7. Martin MB, Testut L, Wöppelman G (2012) Performance of modern tide gauges: towards mm-level accuracy. In: Advances in Spanish physical oceanography. Scientia Marina, Consejo Superior de Investigaciones Científicas, Barcelona, pp 221–228. https://doi.org/10.3989/scimar.03618.18A

    Chapter  Google Scholar 

  8. OC, SCOR and IAPSO (2010) The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties’. In: Intergovernmental oceanographic commission, manuals and guides no. 56. UNESCO, Paris, p 196

    Google Scholar 

  9. Vanicek P, Featherstone WE (1998) Performance of three types of stokes’s kernel in the combined solution for the geoid. J Geodyn 72(12):684–697. https://doi.org/10.1007/s001900050209

    Article  ADS  MATH  Google Scholar 

  10. Andersen OB, Knudsen P, Kenyon S, Holmes S, Factor JK (2019) Evaluation of the global Altimetric marine gravity field DTU15: using marine gravity and GOCE satellite gravity. In: International association of geodesy symposia. Springer, Berlin. https://doi.org/10.1007/1345_2018_52

    Chapter  Google Scholar 

  11. Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M-F (2018) Absolute marine gravimetry with matter-wave interferometry. Nat Commun 9:627

    Article  ADS  Google Scholar 

  12. Barzaghi (2018) The Geomed2 project: estimating the geoid and the DOT in the Mediterranean area. Geophys Res Abs 20:13841. https://doi.org/10.1007/1345_2018_33

    Article  Google Scholar 

  13. Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vanicek and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geodesy 72(3):145–160

    Article  ADS  Google Scholar 

  14. Lequentrec-Lalancette M-F, Salaun C, Bonvalot S, Rouxel R, Bruinsma S (2016) Exploitation of marine gravity. Measurements of the Mediterranean in the validation of global gravity field model. In: International association of geodesy symposia. Springer, Berlin Heidelberg, pp 1–5. https://doi.org/10.1007/1345_2016_258

    Chapter  Google Scholar 

  15. Moritz H (1980) Advanced physical geodesy. H. Wichmann Verlag, Karlsruhe, p 500

    Google Scholar 

  16. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:81. https://doi.org/10.1029/2008JB006008

    Article  Google Scholar 

  17. Sandwell DT, Harper H, Tozer B, Smith WHF (2019) Gravity field recovery from geodetic altimeter missions. Adv Space Res 68:1059. https://doi.org/10.1016/J.asr.2019.09.011

    Article  ADS  Google Scholar 

  18. Zhang SJ, Sandwell DT (2017) Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery. Mar Geod 40:40–56. https://doi.org/10.1080/01490419.2016.1265032

    Article  Google Scholar 

  19. Ablain M, Cazenave A, Larnicol G (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the climate change initiative project. Ocean Sci 11(1):67–82. https://doi.org/10.5194/os-11-67-2015

    Article  ADS  Google Scholar 

  20. Jan G Au fil de l’eau: mesure de la hauteur de mer; Edito 2017 décembre, ©Copyright Afnor Bivi Metrology

    Google Scholar 

  21. Escudier P, Couhert A, Mercier F et al (2018) In: Stammer DL, Cazenave A (eds) Satellite radar altimetry: principle, accuracy and precision, in ‘Satellite altimetry over oceans and land surfaces. CRC Press, Taylor and Francis Group, Boca Raton, New York, London, p 617

    Google Scholar 

  22. IOC (2020) Quality control of in situ sea level observations: a review and progress towards automated quality control, volume 1; 2020/MG/83Vol.1; https://unesdoc.unesco.org/ark:/48223/pf0000373566

  23. Morrow R, Fu L-L, Ardhuin F, Benkiran M, Chapron B, Cosme E, d'Ovidio F, Farrar JT, Gille ST, Lapeyre G, Le Traon P-Y, Pascual A, Ponte A, Qiu B, Rascle N, Ubelmann C, Wang J, Zaron ED (2019) Global observations of fine-Scale Ocean surface topography with the surface water and ocean topography (SWOT) Mission. Front Mar Sci 6:5. https://doi.org/10.3389/fmars.2019.00232

    Article  Google Scholar 

  24. Pérez B, Fanjul EÁ, Pérez S, de Alfonso M, Vela J (2013) Use of tide gauge data in operational oceanography and sea level hazard warning systems. J Operation Oceanogr 6:1–18. https://doi.org/10.1080/1755876X.2013.11020147

    Article  Google Scholar 

  25. Santamaría-Gómez A, Gravelle M, Dangendorf S, Marcos M, Spada G, Wöppelmann G (2017) Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet Sci Lett 473:24–32

    Article  ADS  Google Scholar 

  26. Zawadzki L, Ablain M et al (2016) Error characterization report: altimetry measurements errors at climate scales. CLS-DOS-NT-13-100

    Google Scholar 

  27. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the Inter; national terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res: Solid Earth 112:1–19

    Google Scholar 

  28. Bertin X, Li K, Roland et Bidlot JR (2015) The contribution of short waves in storm surges: two recent examples in the central part of the Bay of Biscay. Cont Shelf Res 96:1–15

    Article  ADS  Google Scholar 

  29. Bouin M-N, Ballu V, Calmant S, Boré J-M, Folcher E, Ammann J (2009) A kinematic GPS methodology for sea surface mapping, Vanuatu. J Geodyn 83(12):1203–1217. https://doi.org/10.1007/S00190-009-0338-x

    Article  ADS  Google Scholar 

  30. Cazenave A (2018) LEGOS-CNES, Toulouse & ISSI. Earth Observation Summer School, ESA, Bern

    Google Scholar 

  31. Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42:RG3001

    Article  ADS  Google Scholar 

  32. Chaumillon E, Bertin X, Fortunato A, Bajo M, Schneider J-L, Dezileau L, Walsh J-P, Michelot A, Chauveau E, Créach A, Hénaff A, Sauzeau T, Waeles B, Gervais B, Jan G, Baumann J, Breilh J-F, Pedreros R (2016) Storm-induced marine flooding: lessons from a multidisciplinary approach. Earth Sci Rev 165:151. https://doi.org/10.1016/j.earscirev.2016.12.005

    Article  ADS  Google Scholar 

  33. Cotroneo Y et al (2016) Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry. J Mar Syst 162:73–88

    Article  Google Scholar 

  34. DYNED-Atlas is a unique database of surface intensified eddies for a 18 year period (2000–2018) in two specific areas: the Mediterranean Sea and the Arabian Sea. Six partners: 3 research laboratories (LMD, LPO and LEGOS), a company (CLS), an SME (ECTIA) and the Shom. Support: ANR- Astrid, Cnes, Shom)

    Google Scholar 

  35. Garreau P, Dumas F, Louazel S, Stegner A, Le Vu B (2018) High-resolution observations and tracking of a dual-core anticyclonic eddy in the Algerian Basin. J Geophys Res Oceans 2018:123. https://doi.org/10.1029/2017JC013667

    Article  Google Scholar 

  36. GIEC; IPCC (2019) In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate. IPCC, Geneva

    Google Scholar 

  37. Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drévillon M, Drillet Y, von Schuckman K, Parent L, Garric G, Greiner E, Desportes C, Zuo H, Balmaseda MA, Peterson KA (2019) The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Climate Dynam 53:287. https://doi.org/10.1007/s00382-018-4585-5

    Article  ADS  Google Scholar 

  38. Leuliette EW, Nerem R, Mitchum G (2004) Calibration of TOPEX/poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geod 27:79–94

    Article  Google Scholar 

  39. Lin J, Qian T (2019) A new picture of the global impacts of El Nino-southern oscillation. Sci Rep 9:17543. https://doi.org/10.1038/s41598-019-54090-5

    Article  ADS  Google Scholar 

  40. Lyard F et al FES2014 global ocean tides atlas: design and performances. Ocean science special issue: developments in the science and history of tides (OS/ACP/HGSS/NPG/SE inter-journal SI), MS Nos-2020-96

    Google Scholar 

  41. Le Traon P-Y, Reppucci A, Alvarez Fanjul E et al (2019) From observation to information and users: the Copernicus marine service perspective. Front Mar Sci 6:234. https://doi.org/10.3389/fmars.2019.00234

    Article  Google Scholar 

  42. Mason E, Pascual A, McWilliams JC (2014) A new sea surface height–based code for oceanic mesoscale Eddy tracking. J Atmos Oceanic Tech 31(5):1181–1188. https://doi.org/10.1175/JTECH-D-14-00019.1

    Article  Google Scholar 

  43. Picco P, Vignudelli S, Repetti L (2020) A comparison between coastal altimetry data and tidal gauge measurements in the Gulf of Genoa (NW Mediterranean Sea). J Mar Sci Eng 8:862

    Article  Google Scholar 

  44. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res Oceans 118:4570–4584. https://doi.org/10.1002/jgrc.20336

    Article  ADS  Google Scholar 

  45. Simon B (2007) Coastal tide, Institut océanographique, Fondation Albert I prince de Monaco, Janvier. (cooperation with Shom and IHO)

    Google Scholar 

  46. Wöppelmann G, Martin-miguez B, Bouin M, Altamimi Z (2007) Geocentric Sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global Planet Change 57:396–406

    Article  ADS  Google Scholar 

  47. Zawadzki L, Ablain M, Carrere L, Ray RD, Zelensky NP, Lyard F, Picot N (2016) Reduction of the 59 -day error sign al in the Mean Sea Level derived from TOPEX/Poseidon, Jason-1 and Jason-2 data with the latest FES and GOT ocean tide models. Ocean Sci Discuss 2016:5. https://doi.org/10.5194/os-2016-19

    Article  Google Scholar 

  48. Araújo IB, Bos MS, Bastos LC, Cardoso MM (2013) Analysing the 100 year sea level record of Leixões. Portugal J Hydrol 481:76–84. https://doi.org/10.1016/j.jhydrol.2012.12.019

    Article  ADS  Google Scholar 

  49. Bradshaw E, Woodworth PL, Hibbert A, Bradley LJ, Pugh DT, Fane C, Bingley RM (2016) A century of sea level measurements at Newlyn. Southwest England Marine Geodesy 39:115–140. https://doi.org/10.1080/01490419.2015.1121175

    Article  Google Scholar 

  50. Goutx D, Baraer F, Roche A, Jan G (2014) Ces tempêtes extrêmes que l'histoire ne nous a pas encore dévoilées. La Houille Blanche 2:27–33. https://doi.org/10.1051/lhb/2014013

    Article  Google Scholar 

  51. Haigh ID, Pickering MD, Green JAM, Arbic BK, Arns A, Dangendorf S, Hill D, Horsburgh K, Howard T, Idier D, Jay DA, Jänicke L, Lee SB, Müller M, Schindelegger M, Talke SA, Wilmes S-B, Woodworth PL (2020) The tides they are a-changin’: a comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications. Rev Geophys 58:1. https://doi.org/10.1029/2018RG000636

    Article  Google Scholar 

  52. Intergovernmental Oceanographic Commission of UNESCO (2020) In: IOC-UNESCO workshop on sea level data archaeology, Paris, 10–12 March 2020. Paris, p. 48

    Google Scholar 

  53. Latapy A (2020) Influence des modifications morphologiques de l’avant-côte sur l’hydrodynamisme et l’évolution du littoral des Hauts-de-France depuis le XIXe siècle (Thèse de doctorat). Littoral

    Google Scholar 

  54. Picard J, de La Hire P (1729) Observations faites à Brest et à Nantes pendant l’année 1679. Mémoire de l’Académie Royale des Sciences, rédigé entre 1666 et 1698 7:379–390

    Google Scholar 

  55. Pouvreau N (2008) Trois cents ans de mesures marégraphiques en France: outils, méthodes et tendances des composantes du niveau de la mer au port de Brest, PhD thesis, Université de La Rochelle

    Google Scholar 

  56. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth Sci Rev 124:51–67

    Article  ADS  Google Scholar 

  57. Whewell W (1836) Tide observations made on the coasts of Europe and America in june 1835. Philos Trans R Soc Lond A 126:289–341

    ADS  Google Scholar 

Download references

Acknowledgments

Acknowledgments to R. Morrow (Legos) for SWOT mission description, M. Drevillon (Mercator Océan) for introducing Copernicus Marine Environment Monitoring Service (CMEMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaële Jan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jan, G. et al. (2022). Sea Level Measurement. In: Daponte, P., Rossi, G.B., Piscopo, V. (eds) Measurement for the Sea. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-82024-4_10

Download citation

Publish with us

Policies and ethics