Skip to main content
Log in

New Features in the Subsurface Structure Model of El Hierro Island (Canaries) from Low-Frequency Microseismic Sounding: An Insight into the 2011 Seismo-Volcanic Crisis

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

To study the deep structure of El Hierro Island, Canarian Archipelago, we have used a microseismic sounding method (MSM) based on the fact that heterogeneities of the Earth’s crust disturb the spectrum of the low-frequency microseismic field in their vicinity. So, at the Earth’s surface, the spectral amplitudes of definite frequency f above the high-velocity heterogeneities are decreasing, and above the low-velocity ones they are increasing. Moreover, the frequency f is connected with the depth of a heterogeneity H and the velocity of the fundamental mode of Rayleigh waves V R(f) through the relation H ≈ 0.4V R(f)/f. From these relations, the MSM lets us model the subsurface structure in a 3D context by inverting the amplitude-frequency spatial distribution of the microseismic field of low frequency. The validity of the method is shown through of numerical simulations and previous applications with known or verified solutions. This MSM is now used to invert the microseismic data registered in El Hierro Island. The obtained subsurface model reveals two large intrusive bodies beneath the island. Joint interpretation of microseismic and gravimetric data and their comparison with the available geological studies relate the central-eastern intrusive body to the early stage of the island formation. With respect to the western intrusive body, at the depths of 15–25 km, an area with lowest seismic velocities is identified, where we suggest that a modern magmatic reservoir is located. This reservoir could be associated with the recent submarine eruption in October 2011 and the accompanying seismic swarm, which started in July 2011. Several correlations between the shallowest structures identified by the gravity and MSM approaches are also found. Besides the numerical simulation and previous studies of this method, the correlation between gravity results, the MSM model, the geological information and the possible explanation of the features of the seismic swarm through the model obtained offer us a valid proof about the plausibility of the subsurface structures identified from MSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abratis M, Schmincke H-U, Hansteen TN (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci (Geol Rundsch) 91:562–582

    Article  Google Scholar 

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Aki K, Richards P (1980) Quantitative seismology: theory and methods, vol 1. W.H. Freeman & Co., San Francisco

    Google Scholar 

  • Aloisi M, Cocina O, Neri G, Orecchio B, Privitera E (2002) Seismic tomography of the crust underneath the Etna volcano, Sicily. Phys Earth Planet Int 134:139–155

    Article  Google Scholar 

  • Anguita F, Hernán F (1975) A propagating fracture model versus a hot spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19

    Article  Google Scholar 

  • Anguita FJ, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geotherm Res 103:1–26

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2000) Effects of Rayleigh and Love waves on microtremor H/V spectra. In: Proceedings of the 12th world conference on earthquake engineering, paper 2232, CD-ROM

  • Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94(1):53–63

    Article  Google Scholar 

  • Araña V, Ortiz R (1986) Marco geodinámico del volcanismo canario. Anales de Física 82:202–231

    Google Scholar 

  • Arnoso J, Benavent M, Vieira R, Venedikov AP (2005) First results of continuous ground tilt measurements in El Hierro island (Canarian Archipelago). In: Workshop on ocean island volcanism, Sal Island, Cape Verde (SAL 2005)

  • Banda E, Dañobeitia JJ, Suriñach E, Ansorge J (1981) Features of crustal structure under Canary Islands. Earth Planet Sci Lett 55:11–24

    Article  Google Scholar 

  • Blanco-Montenegro I, Montesinos FG, Garcia A, Vieira R, Villalain JJ (2005) Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: implications for the early history of the Canary Islands. J Geophys Res 110:B12102. doi:10.1029/2005JB003668

    Article  Google Scholar 

  • Bosshard E, MacFarlane DJ (1970) Crustal structure of the Western Canary Islands from seismic refraction and gravity data. J Geophys Res 75:4901–4918

    Article  Google Scholar 

  • Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34:L02305. doi:10.1029/2006GL028586

    Article  Google Scholar 

  • Caldwell WB, Klemperer SL, Rai SS, Lawrenc JF (2009) Partial melt in the upper middle crust of the northwest Indian Himalaya revealed by Rayleigh wave dispersion. Tectonophysics 477:58–65. doi:10.1016/j.tecto.2009.01.013

    Article  Google Scholar 

  • Canales JP, Ito G, Detrick RS, Sinton J (2002) Crustal thickness along the western Galápagos spreading center and the compensation of the Galápagos hotspot swell. Earth Planet Sci Lett 203:311–327

    Article  Google Scholar 

  • Capon J (1972) Long-period signal processing results for LASA, NORSAR and ALPA. Geophys J R Astr Soc 31:279–296

    Article  Google Scholar 

  • Carracedo JC (1996) Morphological and structural evolution of the western Canary Islands: hotspot-induced three-armed rifts or regional tectonic trends? J Volcanol Geotherm Res 72:151–162

    Article  Google Scholar 

  • Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19

    Article  Google Scholar 

  • Carracedo JC, Day S, Guillou H, Rodríguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Island. Geol Mag 135:591–604

    Article  Google Scholar 

  • Carracedo JC, Day SJ, Guillou H, Perez Torrado FJ (1999) Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J Volcanol Geotherm Res 94:169–190

    Article  Google Scholar 

  • Carracedo JC, Badiola ER, Guillou H, de la Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estudios Geol 57(5–6):175–273

    Google Scholar 

  • Cella F, Fedi M, Florio GI, Grimaldi M, Rapolla A (2007) Shallow structure of the Somma–Vesuvius volcano from 3D inversion of gravity data. J Volcanol Geotherm Res 161(4):303–317

    Article  Google Scholar 

  • Chandrasekhar DV, Mishra DC, Poornachandra Rao GVS, Mallikharjuna Rao J (2002) Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties. Earth Planet Sci Lett 201(2):277–292

    Article  Google Scholar 

  • Chávez-García FJ, Rodriguez M, Stephenson WR (2005) An alternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise. Bull Seismol Soc Am 95:277–293

    Article  Google Scholar 

  • Chouet B, De Luca G, Milina G, Dawson P, Martini M, Scarpa R (1998) Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor. Bull Seismol Soc Am 88:653–666

    Google Scholar 

  • Collier JS, Watts AB (2001) Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic reflection data in their flexural moat. Geophys J Int 147:660–670

    Article  Google Scholar 

  • Dañobeitia JJ, Canales JP (2000) Magmatic underplating in the Canary Archipelago. J Volcanol Geotherm Res 103:27–41

    Article  Google Scholar 

  • Dash BP, Bosshard E (1969) Seismic and gravity investigations around the western Canary Islands. Earth Planet Sci Lett 7:169–177

    Article  Google Scholar 

  • Folger DW, McCullough JR, Irwin BJ, Dodd JE, Strahle WJ, Polloni CF, Bouse RM (1990) Map showing free-air gravity anomalies around the Canary Islands, Spain. Miscellaneous field studies map, MF-2098-B (1 sheet). US Geol. Surv., United States

  • Fujiwara H (1997) Windowed fk spectra of a three-dimensional wavefield excited by a point source in a two-dimensional multilayered elastic medium. Geophys J Int 128:71–584

    Article  Google Scholar 

  • Fúster JM (1975) Las Islas Canarias: un ejemplo de evolución temporal y especial del vulcanismo oceánico. Estudios Geologicos 31:439–463

    Google Scholar 

  • Fúster JM, Hernán F, Cendrero A, Coello J, Cantagrel JM, Ancochea E, Ibarrola E (1993) Geocronología de la isla de El Hierro (Islas Canarias). Bol R Soc Esp Hist Nat Sec Geol 88:86–97 (in Spanish)

    Google Scholar 

  • Galipp K, Klügel A, Hansteen TH (2006) Changing depths of magma fractionation and stagnation during the evolution of an oceanic island volcano: La Palma (Canary Islands). J Volcanol Geotherm Res 155:285–306

    Article  Google Scholar 

  • Garcia-Yeguas A, Koulakov I, Jakovlev A, Ibanez JM (2012) Geophysical research abstracts, vol 14. EGU2012-5563, EGU General Assembly 2012

  • Gee MJR, Watts AB, Masson DG, Mitchell NC (2001) Landslides and the evolution of El Hierro in the Canary Islands. Mar Geol 177:271–293

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Bogaard PVD, Duggen S, Werner R (2005) New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis. Earth Planet Sci Lett 237(1):85–101

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Google Scholar 

  • Gorbatikov AV, Stepanova MY (2008) Statistical characteristics and stationarity properties of low-frequency seismic signals. Izvestiya Phys Solid Earth 44(1):50–59. doi:10.1134/S1069351308010072 (original Russian text published in Fizika Zemli 2008 1:57–67)

    Article  Google Scholar 

  • Gorbatikov AV, Tsukanov AA (2011) Simulation of the Rayleigh waves in the proximity of the scattering velocity heterogeneities. Exploring the capabilities of the microseismic sounding method. Izvestiya Phys Solid Earth 47(4):354–369. doi:10.1134/S1069351311030013 (original Russian text published in Fizika Zemli, 2011, 4, 96–112)

    Article  Google Scholar 

  • Gorbatikov AV, Kalinina AV, Volkov VA, Arnoso J, Vieira R, Velez E (2004) Results of analysis of the data of microseismic survey at Lanzarote Island, Canary, Spain. Pure Appl Geophys 161:1561–1578

    Article  Google Scholar 

  • Gorbatikov AV, Sobisevich AL, Ovsyuchenko AN (2008a) Development of the model of the deep structure of Akhtyr flexure–fracture zone and Shugo mud volcano. Dokl Earth Sci 421(2):969–973. doi:10.1134/S1028334X0806024X [original Russian text published in Doklady Akademii Nauk, 2008, 421(5):670–674]

    Article  Google Scholar 

  • Gorbatikov AV, Stepanova MYu, Korablev GE (2008b) Mechanism of low-frequency microseismic field forming under the influence of local geological heterogeneities and sounding the geological medium with microseisms. Izvestiya Phys Solid Earth 44(7):577–592. doi:10.1134/S1069351308070082 (original Russian text published in Fizika Zemli, 2008, 7, 66–84)

    Article  Google Scholar 

  • Gorbatikov AV, Larin NV, Moiseev EI, Belyashov AV (2009) The microseismic sounding method: application for the study of the buried diatreme structure. Dokl Earth Sci 428(1):1222–1226. doi:10.1134/S1028334X0907040X (original Russian text published in Doklady Akademii Nauk, 2009, 428,4, 526–530)

    Article  Google Scholar 

  • Guillou H, Carracedo JC, Perez Torrado F, Rodríguez Badiola E (1996) K–Ar ages and magnetic stratigraphy of a hotspot induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155

    Article  Google Scholar 

  • Hansteen TH, Klügel A, Schmincke HU (1998) Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contrib Mineral Petrol 132:48–64

    Article  Google Scholar 

  • Harkrider DG (1964) Surface waves in multilayered elastic media. I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space. Bull Seismol Soc Am 54(2):627–681

    Google Scholar 

  • Hernandez-Pacheco A (1982) Sobre una posible erupcion en 1793 en la isla de El Hierro (Canarias). Estud Geol 38:15–25 (in Spanish)

    Google Scholar 

  • Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Holik JS, Rabinowitz PD (1992) Structural and tectonic evolution of oceanic crust within the Jurassic quite zone, offshore Morocco. In: Watkins JS, Zhiqiang F, McMillen KJ (eds) Geology and geophysics of continental margins. The American Association of Petroleum Geologist, Tulsa, pp 259–281

    Google Scholar 

  • Ibáñez JM, De Angelis S, Díaz-Moreno A, Hernández P, Alguacil G, Posadas A, Pérez N (2012) Insights into the 2011–2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity, Geophys J Int 191. doi:10.1111/j.1365-246X.2012.05629.x

  • Kauahikaua J, Hildenbrand T, Webring M (2000) Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models. Geology 28(10):883–886

    Article  Google Scholar 

  • Klügel A, Hoernle KA, Schmincke HU, White JDL (2000) The chemically zoned 1949 eruption on La Palma (Canary Islands): petrologic evolution and magma supply dynamics of a rift-zone eruption. J Geophys Res 105(B3):5997–6016

    Article  Google Scholar 

  • Koroleva TY, Yanovskaya TB, Patrusheva SS (2009) Implication of seismic noise for determining the structure of the upper earth rock mass. Izvestiya Phys Solid Earth 45(5):369–380. doi:10.1134/S1069351309050012 (original Russian text: Fizika Zemli, 2009, 5, 1–12)

    Article  Google Scholar 

  • Krastel S, Schmincke HU, Jacobs CL, Rihm R, Le Bas TP, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res 106(B3):3977–3997

    Article  Google Scholar 

  • Kugaenko YA, Saltykov VA, Gorbatikov AV, Stepanova MYu (2010) Deep structure of the region of the Uzon–Geyser volcanic–tectonic depression (Kamchatka) by low-frequency microseismic sounding. Dokl Earth Sci 435(1):1460–1465. doi:10.1134/S1028334X10110115 (original Russian text published in Doklady Akademii Nauk, 2010, 435, 1, 96–101)

    Article  Google Scholar 

  • Lacoss RT, Kelly EJ, Toksoz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34:21–38

    Article  Google Scholar 

  • Levshin AL, Yanovskaya TB, Lander AB et al (1986) Poverkhnostnye seismicheskie volny v gorizontal’no-neodnorodnoi Zemle (Surface seismic waves in the laterally heterogeneous earth). Nauka, Moscow

    Google Scholar 

  • López C, Blanco MJ, Abella R, Brenes B, Cabrera Rodríguez VM et al (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys Res Lett 39:L13303. doi:10.1029/2012GL051846

    Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Bas TPL, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57(1):1–35

    Article  Google Scholar 

  • Matsushima T, Okada H (1990) Determination of Deep geological structures under urban areas using long-period microtremors. Butsuri-Tansa 43(1):21–33 (in English)

    Google Scholar 

  • Mitchell NC, Masson DG, Watts AB, Gee MJR, Urgeles R (2002) The morphology of the submarine flanks of volcanic ocean islands—a comparative study of the Canary and Hawaiian. J Volcanol Geotherm Res 115(1):83–107

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem Geophys Geosyst 7:Q11007. doi:10.1029/2006GC001248

    Article  Google Scholar 

  • Montesinos FG, Arnoso J, Vieira R (2005) Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int J Earth Sci 94:301–316

    Article  Google Scholar 

  • Montesinos FG, Amoso J, Benavent M, Vieira R (2006) The crustal structure of El Hierro (Canary Islands) from 3-D gravity inversion. J Volcanol Geotherm Res 150:283–299

    Article  Google Scholar 

  • Morgan WJ (1971) Convection plume in the lower mantle. Nature 230:42–44

    Article  Google Scholar 

  • Münn S, Walter TR, Klügel A (2006) Gravitational spreading controls rift zones and flank instability on El Hierro, Canary Islands. Geol Mag 143:257–268

    Article  Google Scholar 

  • Nicolosi I, Blanco-Montenegro I, Pignatelli A, Chiappini M (2006) Estimating the magnetization direction of crustal structures by means of an equivalent source algorithm. Phys Earth Planet Inter 155(1):163–169

    Article  Google Scholar 

  • Noguchi T, Nishida R (2002) Determination of subsurface structure of Tottori plain using microtremors and gravity anomaly. J Nat Disaster Sci 24(1):1–13

    Google Scholar 

  • Okada H, Matsushima T, Moria T, Sasatani T (1990) An exploration technique using long-period microtremors for determination of deep geological structure under urbanized areas. Butsuri-Tansa 43(6):402–417 (in Japanese, abstract and figures in English)

    Google Scholar 

  • Park J, Morgan JK, Zelt CA, Okubo PG, Peters L, Benesh N (2007) Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore–offshore seismic tomography. Earth Planet Sci Lett 259:500–516

    Article  Google Scholar 

  • Pellicer MJ (1977) Estudio volcanológico de la Isla de El Hierro (Islas Canarias). Estud Geol 33:181–197 (in Spanish)

    Google Scholar 

  • Rhodes M, Davies J (2001) Tomographic imaging of multiple mantle plumes in the uppermost lower mantle. Geophys J Int 147:88–92

    Article  Google Scholar 

  • Roest WR, Danobeitia JJ, Verhoef J, Collette BJ (1992) Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the central North Atlantic. Mar Geophys Res 14:1–24

    Article  Google Scholar 

  • Rogozhin EA, Kharazova YV, Gorbatikov AV, Shanov S, Stepanova MY, Mitev A (2009) The structure and contemporary activity of the Intramoesian fault in northeastern Bulgaria obtained through a complex of new geological–geophysical methods. Izvestiya Phys Solid Earth 45(9):794–801. doi:10.1134/S1069351309090079 (original Russian text published in Fizika Zemli, 2009, 9, 48–65)

    Article  Google Scholar 

  • Saccorotti G, Chouet B, Dawson P (2003) Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields. Geophys J Int 152(3):633–648

    Article  Google Scholar 

  • Scherbaum F, Hinzen K-G, Ohrnberger M (2003) Determination of shallow wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys J Int 152:597–612

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic. Geophys Res Lett 31:L07614. doi:10.1029/2004GL019491

    Article  Google Scholar 

  • Snieder R (2004) Extracting the Green’s function from correlation of coda waves: a derivation based on stationary phase. Phys Rev E Stat Nonlinear Soft Matter Phys 69:046610

    Article  Google Scholar 

  • Sobissevitch AL, Gorbatikov AV, Ovsuchenko AN (2008) Deep structure of the Mt. Karabetova mud volcano. Dokl Earth Sci 422(1):1181–1185. doi:10.1134/S1028334X08070428 (original Russian text published in Doklady Akademii Nauk, 2008, 422, 4, 542–546)

    Article  Google Scholar 

  • Tanimoto T, Alvizuri C (2006) Inversion of the HZ ratio of microseisms for S-wave velocity in the crust. Geophys J Int 165:323–335

    Article  Google Scholar 

  • Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The most recent megaslides on the Canary Islands: the El Golfo Debris Avalanche and the Canary Debris Flow, west El Hierro Island. J Geophys Res 102:20305–20323

    Article  Google Scholar 

  • Watanabe T (1993) Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys Res Lett 20(24):2933–2936

    Article  Google Scholar 

  • Watts AB (1994) Crustal structure, gravity anomalies and flexure of lithosphere in the vicinity of the Canary Islands. Geophys J Int 119:648–666

    Article  Google Scholar 

  • Watts AB, Peirce C, Collier J, Dalwood R, Canales JP, Henstock TJ (1997) A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth Planet Sci Lett 146:431–447

    Article  Google Scholar 

  • Wilson D, Leon J, Aster R, Ni J, Schule J, Grand S, Semken S, Baldridge S, Gao W (2002) Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States. Bull Seismol Soc Am 92(8):3335–3341

    Article  Google Scholar 

  • Zheng Y, Shen W, Zhou L, Yang Y, Xie Z, Ritzwoller MH (2011) Crust and uppermost mantle beneath the North China Craton, northeastern China, and the sea of Japan from ambient noise tomography. J Geophys Res V 116:B12312. doi:10.1029/2011JB008637

    Article  Google Scholar 

Download references

Acknowledgments

Projects REN2002-00544/RIES of Spanish Ministry of Education and Science, PIE-200730I029 of Spanish CSIC, GR35/10-A of University Complutense of Madrid-Comunidad de Madrid and Interreg IIIB (VULMAC) from EU have partially supported this work. The authors would like to sincerely thank their colleagues from the Institute of Physics of the Earth of the Russian Academy of Sciences, Prof. Yu S. Genshaft for the intensive and critical discussion of materials of the present paper at different stages of its preparation and Dr. A.V. Kalinina for her inestimable help in preparation and participation in the microseismic field measurements. We would also acknowledge anonymous reviewers for their comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorbatikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbatikov, A.V., Montesinos, F.G., Arnoso, J. et al. New Features in the Subsurface Structure Model of El Hierro Island (Canaries) from Low-Frequency Microseismic Sounding: An Insight into the 2011 Seismo-Volcanic Crisis. Surv Geophys 34, 463–489 (2013). https://doi.org/10.1007/s10712-013-9240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9240-4

Keywords

Navigation