Skip to main content

Advertisement

Log in

The Global Atmospheric Electrical Circuit and Climate

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.J. Adlerman E.R. Williams (1996) ArticleTitle‘Seasonal Variation of the Global Electric Circuit’ J. Geophys. Res. 101 IssueIDD23 29679–29688 Occurrence Handle10.1029/96JD01547

    Article  Google Scholar 

  • E. Anyamba E. Williams J. Susskind A. Fraser-Smith M. Füllekrug (2000) ArticleTitle‘The Manifestation of the Madden–Julian Oscillation in Global Deep Convection and in the Schumann Resonance Intensity’ J. Atmos. Sci. 57 1029–1044 Occurrence Handle10.1175/1520-0469(2000)057<1029:TMOTMJ>2.0.CO;2

    Article  Google Scholar 

  • K.L. Aplin R.G. Harrison (2000) ArticleTitle‘A Computer-controlled Gerdien Atmospheric Ion Counter’ Rev. Sci. Inst. 71 IssueID8 3037–3041 Occurrence Handle10.1063/1.1305511

    Article  Google Scholar 

  • K.L. Aplin R.G. Harrison (2001) ArticleTitle‘A Self-calibrating Programable Mobility Spectrometer for Atmospheric Ion Measurements’ Rev. Sci. Inst. 72 IssueID8 3467–3469 Occurrence Handle10.1063/1.1382634

    Article  Google Scholar 

  • Atmospheric Electricity entry in Encyclopedia Britannica, 1911 edition.

  • Bauer L.A., (1925), ‘Correlations Between Solar Activity and Atmospheric Electricity’. Terr. Magn. 29, 23–32 and 161–186.

  • G.A. Bazilevskaya (2000) ArticleTitle‘Observations of Variability in Cosmic Rays’ Space Sci. Rev. 94 25–38 Occurrence Handle10.1023/A:1026721912992

    Article  Google Scholar 

  • Beccaria, Giambatista (Franceso Ludovico Beccaria), (1775), Della elettricite terrestre atmosferica a cielo serno, Turin.

  • J. Beer (2000) ArticleTitle‘Long-term Indirect Indices of Solar Variability’ Space. Sci. Rev. 94 53–66 Occurrence Handle10.1023/A:1026778013901

    Article  Google Scholar 

  • Beer J., (2002), personal communication.

  • H. Benndorf (1929) ‘Die elektrischen Vorgänge in der Atmosphäre’ G. Gutenberg (Eds) Lehrbuch der Geophysik Verlag von Gebrüder Borntrager Berlin 730–796

    Google Scholar 

  • E.A. Bering (1995) ArticleTitle‘The Global Circuit: Global Thermometer, Weather by-Product or Climatic Modulator’ Rev. Geophys. Suppl. July 1995 845–862 Occurrence Handle10.1029/95RG00549

    Article  Google Scholar 

  • S. Bhartendu (1971) ArticleTitle‘Correlations of Electric Potential Gradient at Land Stations and their Implications in the Classical Picture of Atmospheric Electricity’ Pure Appl. Geophys. 84 13–26 Occurrence Handle10.1007/BF00875447

    Article  Google Scholar 

  • R.J. Blakeslee E.P. Krider (1992) ArticleTitle‘Ground Level Measurements of Air Conductivities Under Florida Thunderstorms’ J. Geophys. Res. 97 IssueIDD12 12947–12951

    Google Scholar 

  • Y. Boisdron J.R. Brock (1970) ArticleTitle‘On the Stochastic Nature of the Acquisition of Electrical Charge and Radioactivity by Aerosol Particles’ Atmos. Environ. 4 35–50 Occurrence Handle10.1016/0004-6981(70)90052-1

    Article  Google Scholar 

  • Bricard J., (1965), ‘Action of Radioactivity and of Pollution Upon Parameters of Atmospheric Electricity’. in S. C. Coroniti (ed.), Problems of Atmospheric and Space Electricity, Elsevier.

  • C.E.P. Brooks (1925) ArticleTitle‘The Distribution of Thunderstorms Over the Globe’ Geophys. Mem. 3 IssueID24 147–164

    Google Scholar 

  • C.E.P. Brooks (1934) ArticleTitle‘The Variation of the Annual Frequency of Thunderstorms in Relation to Sunspots’ Quart. J. Roy. Meteorol. Soc. 60 153–165

    Google Scholar 

  • Budyko M.I., (1971), ‘Results of Observations of Atmospheric Electricity (The World Network, Additional Issue 1965–1969)’. USSR Chief Administration of the Hydro-Meteorological Service, Leningrad.

  • H.K. Burke A.A. Few (1978) ArticleTitle‘Direct Measurements of the Atmospheric Conduction Current’ J. Geophys. Res. 83 3093–3098

    Google Scholar 

  • G.J. Byrne J.R. Benbrook E.A. Bering A.A. Few G.A. Morris W.J. Trabucco E.W. Paschal (1993) ArticleTitle‘Ground-based Instrumentation for Measurements of Atmospheric Conduction Current and Electric-field at the South-pole’ J. Geophys. Res. 98 IssueIDD2 2611–2618

    Google Scholar 

  • Carslaw K.S., Harrison R.G., Kirkby J., (2002), ‘Cosmic Rays, Clouds and Climate’. Science 298, 5599, (Nov 29), 1732–1737.

    Google Scholar 

  • J.A. Chalmers (1967) Atmospheric Electricity EditionNumber2 Pergamon Press New York

    Google Scholar 

  • S.A. Changnon (1985) ArticleTitle‘Secular Variations in Thunder Day Frequencies in the 20th Century’ J. Geophys. Res. 90 IssueIDD4 6181–6194

    Google Scholar 

  • A.-B. Chauveau (1893a) ArticleTitle‘Sur la variation diurne de le’electricite atmospherique, observee au voisinage du sommet de la tour Eiffel’ Comptes Rendus 67 1069–1072

    Google Scholar 

  • Chauveau B. 1893b, ‘Registration of Atmospheric Electricity in the Vicinity of the Summit of the Eiffel Tower’. in Short Reports and Memoranda Published by the Meteorological Council, pp. 1877−1905, Appendix 12, No. 40, Meteorological Office, National Meteorological Library, UK.

  • B. Chauveau (1925) Electricite Atmospherique Libraire Octave Doin Paris

    Google Scholar 

  • C. Chree (1915) ArticleTitle‘Atmospheric Electricity Potential Gradient at Kew Observatory’ Philos. Trans. Roy. Soc. Lond. 215 133–159

    Google Scholar 

  • Christian H.J., (1999), ‘Optical Detection of Lightning from Space’. in Proceedings of the 11th International Conference on Atmospheric Electricity, Guntersville, Alabama, June 7–11, 1999, pp. 715–718.

  • Christian H.J., (2003), ‘Global Lightning Activity’. in Proceedings of the 12th International Conference on Atmospheric Electricity, Versailles, France, June 9–13, 2003, pp. 673–676.

  • Christian H.J., Blakeslee R.J., Boccippio D.J., Boeck W.J., Buechler D.E., Driscoll K.T., Goodman S.J., Hall J.M., Koshak W.J., Mach, D. M and Stewart, M. F. 2003, ‘Global Frequency and Distribution of Lightning as Observed from Space by the Optical Transient Detector’. J. Geophys. Res. 108(DI), DOI: 10.1029/2002JD002347, 4005.

    Google Scholar 

  • J.N. Chubb (1990) ArticleTitle‘Two New Designs of “Field Mill” Type Fieldmeters not Requiring Earthing of Rotating Chopper’ IEE Trans. Ind. Appl. 26 IssueID6 1178–1181 Occurrence Handle10.1109/28.62405

    Article  Google Scholar 

  • C.F. Clement R.A. Clement R.G. Harrison (1995) ArticleTitle‘Charge Distributions and Coagulation of Radioactive Aerosols’ J. Aerosol Sci. 26 IssueID8 1207–1226 Occurrence Handle10.1016/0021-8502(95)00525-0

    Article  Google Scholar 

  • C.F. Clement R.G. Harrison (1992) ArticleTitle‘The Charging of Radioactive Aerosols’ J. Aerosol Sci. 23 IssueID5 481–504 Occurrence Handle10.1016/0021-8502(92)90019-R

    Article  Google Scholar 

  • W.E. Cobb (1968) ArticleTitle‘The Atmospheric Electric Climate at Mauna Loa Observatory, Hawaii’ J. Atmos. Sci. 25 470–480 Occurrence Handle10.1175/1520-0469(1968)025<0470:TAECAM>2.0.CO;2

    Article  Google Scholar 

  • W.D. Crozier (1963) ArticleTitle‘Measuring Atmospheric Potential with Passive Antennas’ J. Geophys. Res. 68 IssueID18 5173–5179

    Google Scholar 

  • S. Dhanorkar A.K. Kamra (1997) ArticleTitle‘Calculation of Electrical Conductivity from Ion-Aerosol Balance Equations’ J. Geophys. Res. 102 IssueIDD25 30147–30159 Occurrence Handle10.1029/97JD02677

    Article  Google Scholar 

  • H. Dolezalek (1972) ArticleTitle‘Discussion of the Fundamental Problem of Atmospheric Electricity’ Pur. App. Geophys. 100 8–42 Occurrence Handle10.1007/BF00880224

    Article  Google Scholar 

  • J.D. Everett (1868) ArticleTitle‘Results of Observations of Atmospheric Electricity at Kew Observatory, and at Kings College, Windsor, Nova Scotia’ Phil. Trans. Roy. Soc. Lond. A 158 347–361

    Google Scholar 

  • E. Everling A. Wigand (1921) ArticleTitle‘Spannungsgefälle und vertikaler Leitungsstrom in der freien Atmosphäre, nach Messungen bei Hochfarten im Freiballon’ Ann. Phys. 66 261–282

    Google Scholar 

  • Fleming J.A. (1939), Terrestrial Magnetism and Electricity (physics of the Earth, volume VII), McGraw-Hill.

  • N.A. Fuchs (1963) ArticleTitle‘On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere’ Geofis. Pura. App. 56 185–193

    Google Scholar 

  • Füllekrug M A.C. Fraser-Smith E.A. Bering A.A. Few (1999) ArticleTitle‘On the Hourly Contribution of Global Cloud-to-Ground Lightning Activity to the Atmospheric Electric Field in the Antarctic During December 1992’ J. Atmos. Sol.-Terr. Phys. 61 IssueID10 745–750 Occurrence Handle10.1016/S1364-6826(99)00031-0

    Article  Google Scholar 

  • Galison P., (1997), Image and Logic: A Material Culture of Microphysics, University of Chicago Press.

  • F. Gensdarmes D. Boulaud A. Renoux (2001) ArticleTitle‘Electrical Charging of Radioactive Aerosols-Comparison of the Clement–Harrison Models with New Experiments’ J. Aerosol Sci. 32 IssueID12 1437–1458 Occurrence Handle10.1016/S0021-8502(01)00065-9

    Article  Google Scholar 

  • Gerdien H., (1905), ‘Ein neuer Apparat zur Messung der elektrischen Leitfähigkeit der Luft’. in Nachrichten von der Gesellschaft der Wisssenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 240–251.

  • O.H. Gish (1944) ArticleTitle‘Evaluation and Interpretation of the Columnar Resistance of the Atmosphere’ Terr. Magn., Atmos. Elect. 49 159–168

    Google Scholar 

  • Gish O.H., Sherman K.L., (1936), ‘Electrical Conductivity of Air to an Altitude of 22 Kilometres’. in Nat. Geogr. Soc. Techn. Papers, Stratosphere Series, No. 2, Washington, DC.

  • Gringel W., (1978), Untersuchungen zur elecktrischen Luftleitfähigkeit unter Berücksichtigung der Sonnenaktivität und der Aerosolteilchenkonzentration bis 35 km Höhe, PhD dissertation, Eberhard-Karls-Universität zu Tubingen.

  • Gringel W., Rosen J.M., Hofmann D.J., (1986), ‘Electrical Structure from 0 to 30 Kilometres, in K. P. Krider and R. G. Roble (eds.), The Earth’s Electrical Environment, Studies in Geophysics, National Academy Press.

  • R. Gunn (1955) ArticleTitle‘The Statistical Electrification of Aerosols by Ionic Diffusion’ J. ColI. Sci. 10 107–119 Occurrence Handle10.1016/0095-8522(55)90081-7

    Article  Google Scholar 

  • W. Hackmann (1994) ArticleTitle‘Sir Francis Ronalds’ Electric Observatory’ Bull. Sri. Instr. Sac 43 27–28

    Google Scholar 

  • W.B. Harland J.L.F. Hacker (1966) ArticleTitle“‘Fossil” Lightning Strikes 250 Million Years Ago’ Adv. Sci. 22 663–671

    Google Scholar 

  • R.G. Harrison (1996) ArticleTitle‘An Atmospheric Electrical Voltmeter Follower’ Rev. Sci. Inst. 67 IssueID7 2636–2638 Occurrence Handle10.1063/1.1147180

    Article  Google Scholar 

  • R.G. Harrison (1997a) ArticleTitle‘An Antenna Electrometer System for Atmospheric Electrical Measurements’ Rev. Sci. Inst. 68 IssueID9 1599–1603 Occurrence Handle10.1063/1.1147932

    Article  Google Scholar 

  • R.G. Harrison (1997b) ArticleTitle‘A Noise-rejecting Current Amplifier for Surface Atmospheric Ion Flux Measurements’ Rev. Sci. Inst. 68 IssueID9 3563–3565 Occurrence Handle10.1063/1.1148323

    Article  Google Scholar 

  • R.G. Harrison (1997c) ArticleTitle‘Climate Change and the Global Atmospheric Electrical System’ Atmos. Environ. 31 IssueID20 3483–3484 Occurrence Handle10.1016/S1352-2310(97)00108-8

    Article  Google Scholar 

  • R.G. Harrison (2000) ArticleTitle‘Cloud Formation and the Possible Significance of Charge For Atmospheric Condensation and Ice Nuclei’ Space Sri Rev. 94 381–396 Occurrence Handle10.1023/A:1026708415235

    Article  Google Scholar 

  • R.G. Harrison (2001) ArticleTitle‘A Balloon-carried Electrometer for High-resolution Atmospheric Electric Field Measurements in Clouds’ Rev. Sci. lnst. 72 IssueID6 2738–2741 Occurrence Handle10.1063/1.1369639

    Article  Google Scholar 

  • R.G. Harrison (2002a) ArticleTitle‘A Wide-range Electrometer Voltmeter for Atmospheric Measurements in Thunderstorms and Disturbed Meteorological Conditions’ Rev. Sci. lnst. 73 IssueID2 482–483 Occurrence Handle10.1063/1.1435840

    Article  Google Scholar 

  • Harrison R.G. 2002b. ‘Twentieth Century Secular Decrease in the Atmospheric Electric Circuit’. Geophys. Res. Lett. 29(14) DOI: 10.1029/2002GL014878.

  • R.G. Harrison (2002c) ArticleTitle‘Radiolytic Particle Production in the Atmosphere’ Atmos. Environ. 36 159–160 Occurrence Handle10.1016/S1352-2310(01)00519-2

    Article  Google Scholar 

  • R.G. Harrison (2003a) ArticleTitle‘Twentieth Century Atmospheric Electrical Measurements at the Observatories of Kew, Eskdalemuir and Lerwick’ Weather 58 11–19

    Google Scholar 

  • Harrison R.G., 2003b, ‘Reply to Comment on “Twentieth Century Secular Decrease in the Atmospheric Potential Gradient”’. Geophys. Res. Lett. 30(15), 1804 DOI: 10.1029/2003GL017381.

  • Harrison R.G. 2004a. ‘Long Term Measurements of the Global Atmospheric Electric Circuit at Eskdalemuir, Scotland, 1911–1981’. Atmos. Res. 70(1), 1–19, DOI: 10.1016/j.atmosres.2003.09.007.

  • R.G. Harrison (2004b) ArticleTitle‘Long-range Correlations in Measurements of the Global Atmospheric Electric Circuit’ J. Atmos. Sol.-Terr. Phys. 66 1127–1133

    Google Scholar 

  • R.G. Harrison K.L. Aplin (2000a) ArticleTitle‘A Multimode Electrometer for Atmospheric Ion Measurements’ Rev. Sci. Inst. 71 IssueID12 4683–4685 Occurrence Handle10.1063/1.1327303

    Article  Google Scholar 

  • R.G. Harrison K.L. Aplin (2000b) ArticleTitle‘Femtoampere Current Reference Stable Over Atmospheric Temperatures’ Rev. Sci. Inst. 71 IssueID8 3231–3232 Occurrence Handle10.1063/1.1304859

    Article  Google Scholar 

  • R.G. Harrison K.L. Aplin (2001) ArticleTitle‘Atmospheric Condensation Nuclei Formation and High energy Radiation’ J. Atmos. Sol.-Terr. Phys. 63 IssueID17 1811–1819 Occurrence Handle10.1016/S1364-6826(01)00059-1

    Article  Google Scholar 

  • R.G. Harrison K.L. Aplin (2002) ArticleTitle‘Mid-nineteenth Century Diurnal Smoke Concentrations at Kew, London’ Atmos. Environ. 36 IssueID25 4037–4043 Occurrence Handle10.1016/S1352-2310(02)00334-5

    Article  Google Scholar 

  • Harrison R.G., Aplin K.L. 2003. ‘Nineteenth Century Parisian Smoke Variations Inferred from Eiffel Tower Atmospheric Electrical Observations’. Atmos. Environ. 37, 5319–5324. DOI: 10.1016/j.atmosenv.2003.09.042.

    Google Scholar 

  • Harrison R.G., Carslaw K.S., (2003), ‘Ion–Aerosol–Cloud Processes in the Lower Atmosphere’. Rev. Geophys. 41(3), 1012. DOI: 10.1029/2002RG000114.

  • Harrison R.G., Ingram W.J. 2004. ‘Global Circuit Air-Earth Current Measurements at Kew, London, 1909–1979’. Atmos. Res., in press.

  • K.B.H. Herbert (1997) ArticleTitle‘John Canton – pioneer Investigator of Atmospheric Electricity’ Weather 52 IssueID9 286–290

    Google Scholar 

  • V.F. Hess (1928) The Electrical Conductivity of the Atmosphere and its Causes Constable and Company London

    Google Scholar 

  • K. Hoffman (1924) ArticleTitle‘Bericht über die in Ebeltolhafen auf Spitzbergen (11°36′15′′ E, 79°9′14′′ N) in den Jahren 1913/14 durchgeführten luftelektrischen Messungen’ Beitr. Phys. Frei. Atmos. 11 1–19

    Google Scholar 

  • N. Holden (2004) Novel High Resolution Ion Mobility Spectrometers for Atmospheric Ion Measurements, PhD Thesis University of Bristol UK

    Google Scholar 

  • U. Hõrrak J. Salm H. Tammet (1998) ArticleTitle‘Bursts of Intermediate Ions in Atmospheric Air’ J. Geophys. Res. 103 IssueIDD12 13909–13915 Occurrence Handle10.1029/97JD01570

    Article  Google Scholar 

  • W.C.A. Hutchinson T.W. Wormell (1968) ArticleTitle‘Obituary for J. A.Chalmers’ Quart. J. Roy. Meteorol. Soc. 94 121

    Google Scholar 

  • I.M. Imyanitov E.V. Chubarina (1967) Electricity of the Free Atmosphere Israel program for Scientific Translations Jerusalem

    Google Scholar 

  • H. Israel (1970) Atmospheric Electricity, Vol. 1 (Fundamentals, Conductivity, Ions), Problems of Cosmic Physics, Vo1. 29 Israel Program for Scientific Translations Jerusalem

    Google Scholar 

  • H. Israel (1973) Atmospheric Electricity, Vol. 2 (Fields, charges, currents), Problems of Cosmic Physics, Vol. 29 Israel Program for Scientific Translations Jerusalem

    Google Scholar 

  • S. Israelsson H. Tammet (2001) ArticleTitle‘Variation of Fair Weather Atmospheric Electricity Marsta Observatory, Sweden, 1993–1998’ J. Atmos. Sol.-Terr. Phys. 63 1693–1703 Occurrence Handle10.1016/S1364-6826(01)00049-9

    Article  Google Scholar 

  • S.C. Kernthaler R. Toumi J.D. Haigh (1999) ArticleTitle‘Some Doubts Concerning a Link Between Cosmic Ray Fluxes and Global Cloudiness’ Geophys. Res. Lett. 26 IssueID7 863–865 Occurrence Handle10.1029/1999GL900121

    Article  Google Scholar 

  • Kirkby J., (2001), ‘CLOUD: A Particle Beam Facility to Investigate the Influence of Cosmic Rays on Clouds’. in Proceedings of Workshop on Ion–Aerosol–Cloud Interactions, CERN, Geneva (CERN−2001–007), pp. 175–248.

  • J.E. Kristjánsson J. Kristiansen (2000) ArticleTitle‘Is There a Cosmic Ray Signal in Recent Variations in Global Cloud Cover and Cloud Radiative Forcing?’ J. Geophys. Res. 105 11851–11863 Occurrence Handle10.1029/2000JD900029

    Article  Google Scholar 

  • H. Krumm (1962) ArticleTitle‘Der weltzeitliche Tagesgang der Gewitterhäufigkeit’ Zeit. f. Geophys. 28 85–104

    Google Scholar 

  • MacGorman, D. R and Rust W.D. 1998. ‘The Electrical Nature of Storms, Oxford University Press.

  • Makela J. 1992. Studies on Irradiation Induced Aerosol Particle Formation Processes in Air Containing Sulphur Dioxide, PhD Thesis, University of Helsinki.

  • G. Manley (1953) ArticleTitle‘The Mean Temperature of Central England’ Quart. J. Roy. Meteorol. Soc. 79 242–261

    Google Scholar 

  • F. Märcz R.G. Harrison (2003) ArticleTitle‘Long-term Changes in Atmospheric Electrical Parameters Observed at Nagycenk (Hungary) and the UK Observatories at Eskdalemuir and Kew’ Ann. Geophys. 21 2193–2200

    Google Scholar 

  • F. Märcz G. Satori B. Zieger (1997) ArticleTitle‘Variations in Schumann Resonances and their Relation to Atmospheric Electric Parameters at Nagycenk Station’ Ann. Geophys. 15 IssueID12 1604–1614

    Google Scholar 

  • R Markson (1976) ArticleTitle‘Ionospheric Potential Variations from Aircraft Measurements of Potential Gradient’ J. Geophys. Res. 81 IssueID12 1980–1990

    Google Scholar 

  • R. Markson (1981) ArticleTitle‘Modulation of the Earth’s Electric Field by Cosmic Radiation’ Nature 291 304–308 Occurrence Handle10.1038/291304a0

    Article  Google Scholar 

  • R. Markson (1985) ArticleTitle‘Aircraft Measurements of the Atmospheric Electrical Global Circuit During the Period 1971–1984’ J. Geophys. Res. 90 IssueIDD4 5967–5977

    Google Scholar 

  • Markson R., (1988), ‘Comparison of Ionospheric Potential and Air-Earth Current as Indicators of the Global Circuit Current’ in Proceedings of the 8th International Conference on Atmospheric Electricity, Institute of High Voltage Research, Uppsala University, Sweden, pp. 814–819.

  • Markson R., (2003), ‘Ionospheric Potential Variation from Temperature Change over the Continents’. in Proceedings of the 12th International Conference on Atmospheric Electricity, Versailles, France, June 9–13.

  • R. Markson C. Price (1999) ArticleTitle‘Ionospheric Potential as a Proxy Index for Global Temperature’ Atmos. Res. 51 309–314 Occurrence Handle10.1016/S0169-8095(99)00015-0

    Article  Google Scholar 

  • R. Markson L.H. Ruhnke E.R. Williams (1999) ArticleTitle‘Global Scale Comparison of Simultaneous Ionospheric Potential Measurements’ Atmos. Res. 51 315–321 Occurrence Handle10.1016/S0169-8095(99)00016-2

    Article  Google Scholar 

  • N. Marsh H. Svensmark (2000) ArticleTitle‘Low cloud-properties influenced by cosmic rays’ Phys. Rev. Lett. 85 IssueID23 5004–5007 Occurrence Handle10.1103/PhysRevLett.85.5004 Occurrence Handle11102172

    Article  PubMed  Google Scholar 

  • Mason B.J., (1971), The Physics of Clouds, Oxford University Press.

  • J.A. Morente G.K. Molina-Cuberos J.A. Porti K. Schwingenschuh B.P. Besser (2003) ArticleTitle‘A Study of the Propagation of Electromagnetic Waves in Titan’s Atmosphere with the TLM Numerical Method’ Icarus 162 374–384 Occurrence Handle10.1016/S0019-1035(03)00025-3

    Article  Google Scholar 

  • J. Mössinger (2004) ArticleTitle‘The Veil of Two Cities’ Nature 427 25 Occurrence Handle10.1038/427025a Occurrence Handle14702073

    Article  PubMed  Google Scholar 

  • R.P. Mülheisen (1971) ArticleTitle‘New Determination of the Air-Earth Current Over the Ocean and Measurements of Ionospheric Potentials’ Pur. App. Geophys. 84 112–115 Occurrence Handle10.1007/BF00875459

    Article  Google Scholar 

  • Mülheisen R., (1977), ‘The Global Circuit and its Parameters’. in H. Dolezalek and R. Reiter (eds.), Electrical Processes in Atmospheres, Steinkopf Verlag, pp. 467–476.

  • E.P. Ney (1959) ArticleTitle‘Cosmic Radiation and the Weather’ Nature 183 451–452

    Google Scholar 

  • T. O’Connor (2000) Personal communication European Aerosol Conference Dublin

    Google Scholar 

  • R.E. Orville R.W. Henderson (1986) ArticleTitle‘Global Distribution of Midnight Lightning: September 1977 to August 1978’ Monthly Weather Rev. 114 2640–2653 Occurrence Handle10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2

    Article  Google Scholar 

  • Paramanov N.A., (1971), ‘Determination of the Global Diurnal Variations of the Potential Gradient of the Electric Field in the Atmosphere and the Vertical Conduction Current Meteorologiya i gidrologlya 12, 89–94. (in Russian) (English Translation: Meteorology and Hydrology, March 1972, National Service for Technical Information, US Dept. Commerce, Springfield, Virginia, 22151, USA; No. JRPA 55331).

  • M. Pauthenier (1956) ArticleTitle‘Probléme général de la charge acquise par une particule sphérique dans un champ électrique bi-ioinsé’ Comptes Rendus B 243 606–1608

    Google Scholar 

  • T.C. Peterson R.S. Vose (1997) ArticleTitle‘An Overview of the Global Historical Climatology Network Temperature Database’ Bull. Am. Meteor. Soc. 78 2837–2849 Occurrence Handle10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2

    Article  Google Scholar 

  • E.T. Pierce (1972) ArticleTitle‘Radioactive Fallout and Secular Effects in Atmospheric Electricity’ J. Geophys. Res. 77 IssueID1 482–487

    Google Scholar 

  • C. Price (1993) ArticleTitle‘Global Surface Temperatures and the Atmospheric Electrical Circuit’ Geophys. Res. Lett. 20 IssueID13 1363–1366

    Google Scholar 

  • C. Price (2000) ArticleTitle‘Evidence for a Link Between Global Lightning Activity and Upper Troposphere Water Vapour’ Nature 406 290–293 Occurrence Handle10.1038/35018543 Occurrence Handle10917527

    Article  PubMed  Google Scholar 

  • Pruppacher H.R., Klett, J. D. 1997, Microphysics of Clouds and Precipitation, 2nd ed., Kluwer Academic Publishers.

  • M.L. Pudovkin S.V. Veretenenko (1995) ArticleTitle‘Cloudiness Decreases Associated with Forbush−decreases of Galactic Cosmic Rays’ J. Atmos. Terr. Phys. 75 1349–1355 Occurrence Handle10.1016/0021-9169(94)00109-2

    Article  Google Scholar 

  • J. Read (1791) ArticleTitle‘A Meteorological Journal, Principally Relating to Atmospheric Electricity; Kept at Knightsbridge, from the 9th of May, 1789, to the 8th of May, 1790’ Philos. Trans. Roy. Soc. Lond. 81 185–212

    Google Scholar 

  • J. Read (1792) ArticleTitle‘A Meteorological Journal, Principally Relating to Atmospheric Electricity; Kept at Knightsbridge, from the 9th of May, 1790, to the 8th of May, 1791’ Philos. Trans. Roy. Soc. Lond. 82 225–256

    Google Scholar 

  • Ronalds F., (1844), ‘Report Concerning the Observatory of the British Association, at Kew, from August 1st 1843 to July 31st 1844, Report of the British Association, pp. 126–127.

  • W.B. Rossow R.A. Schiffer (1991) ArticleTitle‘ISCCP Cloud Data Products’ Bull. Am. Meteor. Soc. 72 2–20 Occurrence Handle10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2

    Article  Google Scholar 

  • M.J. Rycroft S. Israelsson C. Price (2000) ArticleTitle‘The Global Atmospheric Electric Circuit, Solar Activity and Climate Change’ J. Atmos. Sol.-Terr. Phys 62 1563–1576 Occurrence Handle10.1016/S1364-6826(00)00112-7

    Article  Google Scholar 

  • R.C. Sagalyn G.A. Faucher (1954) ArticleTitle‘Aircraft Investigation of the Large Ion Content and Conductivity of the Atmosphere and Their Relation to Meteorological Factors’ J. Atmos. Terr. Phys. 5 253–272 Occurrence Handle10.1016/0021-9169(54)90046-X

    Article  Google Scholar 

  • K. Schlegel G. Dienforger S. Thern M. Schmidt (2001) ArticleTitle‘Thunderstorms, Lightning and Solar Activity – Middle Europe’ J. Atmos Sol.-Terr. Phys. 63 1705–1713 Occurrence Handle10.1016/S1364-6826(01)00053-0

    Article  Google Scholar 

  • Scrase F.J., (1934), ‘Observations of Atmospheric Electricity at Kew Observatory: A Survey of Results Obtained from 1843 to 1931’. Geophys. Mem. 60, Meteorological Office, HMSO, London, UK.

  • N.J. Shaviv J. Veizer (2003) ArticleTitle‘Celestial Driver of Phanerozoic Climate?’ GSA Today 13 IssueID7 4–10 Occurrence Handle10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2

    Article  Google Scholar 

  • G. Simpson (1906) ArticleTitle‘Atmospheric Electricity in High Latitudes’ Philos. Trans. Roy. Soc. Lond. A 205 61–97

    Google Scholar 

  • P.A. Stott G.S. Jones J.F.B. Mitchell (2003) ArticleTitle‘Do Models Underestimate the Solar Contribution to Recent Climate Change?’ J. Climate 16 4079–4093 Occurrence Handle10.1175/1520-0442(2003)016<4079:DMUTSC>2.0.CO;2

    Article  Google Scholar 

  • M.F. Stringfellow (1974) ArticleTitle‘Lightning Incidence in Britain and The Solar Cycle’ Nature 249 332–333

    Google Scholar 

  • A.I. Sukhorukov (1991) ArticleTitle‘On the Schumann Resonances on Mars’ Planet. Space Sci. 39 1673–1676 Occurrence Handle10.1016/0032-0633(91)90028-9

    Article  Google Scholar 

  • Sun B., Bradley R.S., (2002), ‘Solar Influences on Cosmic Rays and Cloud Formation: A Reassessment’. J. Geophys. Res. 107, (D14) DOI: 10.1029/2001JD000560.

  • H. Svensmark E. Friis-Christensen (1997) ArticleTitle‘Variations of Cosmic Ray Flux and Global Cloud Coverage – A Missing Link in Solar–Climate Relationships’ J. Atmos Sol.-Terr. Phys. 59 1225–1232 Occurrence Handle10.1016/S1364-6826(97)00001-1

    Article  Google Scholar 

  • H. Tammet S. Israelsson E. Knudsen T.J. Tuomi (1996) ArticleTitle‘Effective Area of a Horizontal Long−wire Antenna Collecting the Atmospheric Electric Vertical Current’ J. Geophys. Res. 101 IssueIDD23 29671–29677 Occurrence Handle10.1029/96JD02131

    Article  Google Scholar 

  • B.A. Tinsley R.P. Rohrbaugh M. Hei K.V. Beard (2000) ArticleTitle‘Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets, and on Droplet Charging and Possible Ice Nucleation Processes’ J. Atmos. Sci. 57 2118–2134 Occurrence Handle10.1175/1520-0469(2000)057<2118:EOICOT>2.0.CO;2

    Article  Google Scholar 

  • Torreson O.W., (1946), Ocean Atmospheric–Electric Results (Scientific Results of Cruise VII of the Carnegie During 1928–1929 Under Command of Captain J. P. Ault, Vol. 3), Carnegie Institution of Washington publication 568.

  • S.N. Tripathi R.G. Harrison (2002) ArticleTitle‘Enhancement of Contact Nucleation by Scavenging of Charged Aerosol Particles’ Atmos. Res. 62 57–70 Occurrence Handle10.1016/S0169-8095(02)00020-0

    Article  Google Scholar 

  • S. Twomey (1974) ArticleTitle‘Pollution and Planetary Albedo’ Atmos. Environ. 8 1251–1256 Occurrence Handle10.1016/0004-6981(74)90004-3

    Article  Google Scholar 

  • P.K. Wang (1980) ArticleTitle‘On the Relationship Between Winter Thunderstorms and the Climatic Change in China in the Past 2200 Years’ Climatic Change 3 37–46 Occurrence Handle10.1007/BF00144984

    Article  Google Scholar 

  • F.J.W. Whipple (1929) ArticleTitle‘On the Association of the Diurnal Variation of Electric Potential on Fine Weather with the Distribution of Thunderstorms over the Globe’ Quart. J. Roy. Meteorol. Soc. 55 1–17

    Google Scholar 

  • Whipple F.J.W., Scrase F.J., (1936), ‘Point Discharge in the Electric Field of the Earth’. Geophysical Memoirs 68, Meteorological Office, HMSO, London.

  • A. Wigand (1928) ArticleTitle‘Messungen des luftelektrischen Potentialgefälles von Luftschiff’ Ann. Physik 85 333–361

    Google Scholar 

  • M Wilkening (1985) ArticleTitle‘Characteristics of Atmospheric Ions in Contrasting Environments’ Journal Title 90 IssueIDD4 5933–5935

    Google Scholar 

  • E.R. Williams (1992) ArticleTitle‘The Schumann Resonance: A Global Tropical Thermometer’ Science 256 1184–1187

    Google Scholar 

  • R. Williams E. (1994) ArticleTitle‘Global Circuit Response to Seasonal Variations in Global Surface Air Temperature’ Mon. Weath. Rev. 122 1917–1929 Occurrence Handle10.1175/1520-0493(1994)122<1917:GCRTSV>2.0.CO;2

    Article  Google Scholar 

  • Williams E.R., (1999), ‘Global Circuit Response to Temperature on Distinct Time Scales: A Status Report’. in M. Hayawaka (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena, Terra Sci., Tokyo.

  • Williams E.R., (2003), ‘Comment to “Twentieth Century Secular Decrease in the Atmospheric Potential Gradient” by Giles Harrison’. Geophys. Res. Lett. 30(15), 1803. DOI 10.1029/2003GL017094.

    Google Scholar 

  • E.R. Williams S.J. Heckman (1993) ArticleTitle‘The Local Diurnal Variation of Cloud Electrification and the Global Diurnal Variation of Negative Charge on Earth’ J. Geophys. Res. 98 IssueIDD3 5221–5234

    Google Scholar 

  • E.R. Williams G. Satori (2004) ArticleTitle‘Lightning, Thermodynamic and Hydrological Comparison of the Two Tropical Continental Chimneys’ J. Atmos. Sol. -Terr. Phys. 66 1213–1231 Occurrence Handle10.1016/j.jastp.2004.05.015

    Article  Google Scholar 

  • C.T.R. Wilson (1906) ArticleTitle‘On the Measurement of the Earth-Air Current and on the Origin of Atmospheric Electricity’ Proc. Camb. Philos. Soc. 13 IssueID6 363–382

    Google Scholar 

  • C.T.R. Wilson (1920) ArticleTitle‘Investigations on Lightning Discharges and on the Electric Field of Thunderstorms’ Philos. Trans. Roy. Soc. Lond. A 221 73–115

    Google Scholar 

  • C.T.R. Wilson (1929) ArticleTitle‘Some Thundercloud Problems’ J. Franklin Inst. 208 1–12 Occurrence Handle10.1016/S0016-0032(29)90935-2

    Article  Google Scholar 

  • Winkler P., Gantner L., Kohler U., (1998), Hat sich wegen der langfristigen Ozonabnahme die UV-Strahlung erhot, Deutscher Wetterdienst (Meteorologisches Observatorium Hohenpeißenberg), December 1998.

  • T.W. Wormell (1953) ArticleTitle‘Atmospheric Electricity: Some Recent Trends and Problems’ Quart. J. Roy. Meteorol. Soc. 79 3–50

    Google Scholar 

  • Yu F., (2002), ‘Altitude Variations of Cosmic Ray Induced Production of Aerosols: Implications for Global Cloudiness and Climate’. J.Geophys. Res. 107(A7), DOI: 10.1029/2001JA000248.

  • F. Yu R.P. Turco (2001) ArticleTitle‘From Molecular Clusters to Nanoparticles: Role of Ambient Ionisation in Tropospheric Aerosol Formation’ J.Geophys. Res. 106 IssueIDD5 4797–4814 Occurrence Handle10.1029/2000JD900539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, R.G. The Global Atmospheric Electrical Circuit and Climate. Surv Geophys 25, 441–484 (2004). https://doi.org/10.1007/s10712-004-5439-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-004-5439-8

Keywords

Navigation