Skip to main content
Log in

Tent property of the growth indicator functions and applications

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(\Gamma \) be a Zariski dense discrete subgroup of a connected semisimple real algebraic group G. Let \(k={\text {rank}} G\). Let \(\psi _\Gamma :\mathfrak {a} \rightarrow \mathbb {R}\cup \{-\infty \}\) be the growth indicator function of \(\Gamma \), first introduced by Quint. In this paper, we obtain the following pointwise bound of \(\psi _\Gamma \): for all \(v\in \mathfrak {a}\),

$$\begin{aligned} \psi _\Gamma (v) \le \min _{1\le i\le k} \delta _{\alpha _i} \alpha _i(v) \end{aligned}$$

where \(\Delta =\{\alpha _1, \cdots , \alpha _k\}\) is the set of all simple roots of \((\mathfrak {g},\mathfrak {a})\) and \(0<\delta _{\alpha _i}\le \infty \) is the critical exponent of \(\Gamma \) associated to \(\alpha _i\). When \(\Gamma \) is \(\Delta \)-Anosov, there are precisely k-number of directions where the equality is achieved, and the following strict inequality holds for \(k\ge 2\): for all \(v\in \mathfrak {a}-\{0\}\),

$$\begin{aligned} \psi _\Gamma (v) <\frac{1}{k}\sum _{i=1}^k \delta _{\alpha _i} \alpha _i (v). \end{aligned}$$

We discuss applications for self-joinings of convex cocompact subgroups in \(\prod _{i=1}^k {\text {SO}}(n_i,1)\) and Hitchin subgroups of \({\text {PSL}}(d, \mathbb {R})\). In particular, for a Zariski dense Hitchin subgroup \(\Gamma <\text {PSL}(d, \mathbb {R})\), we obtain that for any \( v={\text {diag}}(t_1, \cdots , t_d)\in \mathfrak {a}^+\),

$$\begin{aligned} \psi _\Gamma (v) \le \min _{1\le i\le d-1} (t_i -t_{i+1}). \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Since \(\psi _\Gamma \) is homogeneous, the strict concavity of \(\psi _\Gamma \) is equivalent to saying that \(\psi _\Gamma (v+w) > \psi _\Gamma (v)+\psi _\Gamma (w)\) for all \(v, w\in {\text {int}}\mathcal {L}\) in different directions.

References

  1. Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 1–47 (1997)

  2. Bishop, C., Steger, T.: Representation theoretic rigidity in \(\text{ PSL }(2,\mathbb{R} )\). Acta Math. 170, 121–149 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bray, H., Canary, R., Kao, L., Martone, G.: Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations. J. Reine Angew. Math. (Crelles) 791, 1–51 (2022)

  4. Bridgeman, M., Canary, R., Labourie, F., Sambarino, A.: The pressure metric for Anosov representations. Geom. Funct. Anal. 25, 1089–1179 (2015)

    Article  MathSciNet  Google Scholar 

  5. Burger, M.: Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2. Int. Math. Res. Not. 7, 217–225 (1993)

    Article  MathSciNet  Google Scholar 

  6. Burger, M., Landesberg, O., Lee, M., Oh, H.: The Hopf–Tsuji–Sullivan dichotomy in higher rank and applications to Anosov subgroups. J. Mod. Dyn. 19, 301–330 (2023)

    Article  MathSciNet  Google Scholar 

  7. Canary, R., Zhang, T., Zimmer, A.: Entropy rigidity for cusped Hitchin representations. Preprint, arXiv:2201.04859

  8. Edwards, S., Lee, M., Oh, H.: Anosov groups: local mixing, counting, and equidistribution. Geom. Topol. 27(2), 513–573 (2023)

    Article  MathSciNet  Google Scholar 

  9. Edwards, S., Oh, H.: Temperedness of \(L^2(\Gamma \backslash {G})\) and positive eigenfunctions in higher rank. Commun. AMS. 3, 744–778 (2023)

  10. Guéritaud, F., Kassel, F.: Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geom. Topol. 21, 693–840 (2017)

    Article  MathSciNet  Google Scholar 

  11. Guéritaud, F., Guichard, O., Kassel, F., Wienhard, A.: Anosov representations and proper actions. Geom. Topol. 21(1), 485–584 (2017)

    Article  MathSciNet  Google Scholar 

  12. Kapovich, M., Leeb, B.: Discrete Isometry Groups of Symmetric Spaces. Handbook of Group Actions, Vol. IV, pp. 191–290. Adv. Lect. Math. (ALM), 41, Int. Press, Somerville (2018)

  13. Kapovich, M., Leeb, B., Porti, J.: Anosov subgroups: dynamical and geometric characterizations. Eur. J. Math. 3(4), 808–898 (2017)

    Article  MathSciNet  Google Scholar 

  14. Kapovich, M., Leeb, B., Porti, J.: A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings. Geom. Topol. 22(7), 3827–3923 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kim, D., Minsky, Y., Oh, H.: Hausdorff dimension of directional limit sets of self-joinings of hyperbolic manifolds. J. Mod. Dyn. 19, 433–453 (2023)

    Article  MathSciNet  Google Scholar 

  16. Guichard, O., Wienhard, A.: Anosov representations: domains of discontinuity and applications. Invent. Math. 190(2), 357–438 (2012)

    Article  MathSciNet  Google Scholar 

  17. Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lee, M., Oh, H.: Invariant measures for horospherical actions and Anosov groups. Int. Math. Res. Notices 2023(19), 16226–16295 (2023)

  19. Lee, M., Oh, H.: Dichotomy and measures on limit sets of Anosov groups. Preprint, arXiv:2203.06794. To appear in IMRN

  20. Magee, M.: Quantitative spectral gap for thin groups of hyperbolic isometries. J. EMS 17, 151–187 (2015)

    MathSciNet  Google Scholar 

  21. Oh, H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J. 113(1), 133–192 (2002)

    Article  MathSciNet  Google Scholar 

  22. Patterson, S.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)

    Article  MathSciNet  Google Scholar 

  23. Potrie, R., Sambarino, A.: Eigenvalues and entropy of a Hitchin representation. Invent. Math. 209(3), 885–925 (2017)

    Article  MathSciNet  Google Scholar 

  24. Pozzetti, B., Sambarino, A., Wienhard, A.: Conformality for a robust class of non-conformal attractors. J. Reine Angew. Math. (Crelles) 2021(774), 1–51 (2021)

  25. Quint, J.-F.: Divergence exponentielle des sous-groupes discrets en rang supérieur. Comment. Math. Helv. 77(3), 563–608 (2002)

    Article  MathSciNet  Google Scholar 

  26. Quint, J.-F.: Propriété de Kazhdan et sous-groupes discrets de covolume infini. Travaux mathématiques. Fasc. XIV, 143–151. Trav. Math., 14, Univ. Luxemb., Luxembourg (2003)

  27. Quint, J.-F.: L’indicateur de croissance des groupes de Schottky. Ergodic Theory Dynam. Syst. 23(1), 249–272 (2003)

    Article  MathSciNet  Google Scholar 

  28. Sambarino, A.: Hyperconvex representations and exponential growth. Ergodic Theory Dynam. Syst. 34(3), 986–1010 (2014)

    Article  MathSciNet  Google Scholar 

  29. Sullivan, D.: The density at infinity of a discrete subgroup of hyperbolic motions. Publ. IHES 171–202 (1979)

  30. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Differ. Geometry. 25, 327–351 (1987)

    Article  MathSciNet  Google Scholar 

  31. Thurston, W.: Minimal stretch maps between hyperbolic surfaces. arXiv:math/9801039

Download references

Acknowledgements

We would like to thank Marc Burger and Dick Canary for useful comments and Andres Sambarino for pointing out some redundant rank restriction in our earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Minsky and Oh are partially supported by the NSF.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.M., Minsky, Y.N. & Oh, H. Tent property of the growth indicator functions and applications. Geom Dedicata 218, 14 (2024). https://doi.org/10.1007/s10711-023-00846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00846-3

Keywords

Mathematics Subject Classification

Navigation