Skip to main content
Log in

Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the link between Anosov representations and (GX)-structure on spacetimes with \(G = O_0(2,n)\) and X is the Einstein universe \(Ein_{1,n-1}\) (\(n \ge 3\)), namely conformally flat spacetimes. Let \(\varGamma \) be a Gromov hyperbolic group and let \(\rho : \varGamma \rightarrow O_0(2,n)\) be a \(P_1\)-Anosov representation as defined in [14]. We suppose that the limit set is an acausal subset in \(Ein_{1,n-1}\). Our first result is that \(\rho \) is the holonomy of a globally hyperbolic spatially compact maximal (abbrev. GHCM) conformally flat spacetime of dimension n. This comes in the continuity of Barbot-Mérigot work in anti-de Sitter geometry Barbot and Mérigot (Groups Geometry Dynamics 6(3): 441–483 2012): they proved that when the limit set is a topological \((n-1)\)-sphere then \(\rho \) is the holonomy of a GHCM spacetime locally modeled on the anti-de Sitter spacetime \(AdS_{1,n}\). Our second result extends this last one and state that, except in this particular case, \(\rho \) is the holonomy of a strongly causal AdS-spacetime of dimension \((n+1)\) which is a BTZ-black hole Banados et al. (Phys Rev D Part Fields 48(4):1506–1525 1993), Banados et al. (Phys Rev Lett 69(13):1849–1851 1992), Barbot T (Adv Theor Math Phys 12:1209–1257 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated during the current study.

Notes

  1. In dimension \(2+1\), the Einstein equation is remarkably simplified: the solutions have all constant sectional curvature with the same sign than the cosmological constant has.

  2. A causal curve \(\gamma : I \rightarrow M\) in a spacetime M is said to be unextendible if there is no causal curve \({\tilde{\gamma }}: J \rightarrow {\tilde{M}}\) that extends \(\gamma \), i.e. such that \(I \subset J\) and \({\tilde{\gamma }} = \gamma \).

  3. In [4,  Definition 9.3], Barbot defines the natural conformal boundary of a strongly causal AdS-spacetime. He proves that any strongly AdS-spacetime admits a natural conformal boundary [4,  Theorem 9.5]; moreover, this boundary is unique up to isomorphism. For more details, we direct the reader to [4,  Sect. 9].

References

  1. Andersson, L., Barbot, T., Béguin, F., Zeghib, A.: Cosmological time versus CMC time in spacetimes of constant curvature. Asian Journal Mathematics 16(1), 37–88, 03 (2012)

    Article  MathSciNet  Google Scholar 

  2. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the 2+1 black hole. Phys. Rev. D: Part. Fields 48(4), 1506–1525 (1993)

    Article  Google Scholar 

  3. Banados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69(13), 1849–1851 (1992)

    Article  MathSciNet  Google Scholar 

  4. Barbot, T.: Causal properties of AdS-isometry groups II: BTZ multi black-holes. Adv. Theor. Math. Phys. 12, 1209–1257 (2005)

    Article  MathSciNet  Google Scholar 

  5. Barbot, T.: Causal properties of AdS-isometry groups. I. Causal actions and limit sets. Adv. Theor. Math. Phys. 12(1), 1–66 (2008)

    Article  MathSciNet  Google Scholar 

  6. Barbot, T.: Deformations of Fuchsian AdS representations are quasi-Fuchsian. Journal Differential Geometry 101(1), 1–46 (2015)

    Article  MathSciNet  Google Scholar 

  7. Barbot, T., Mérigot, Q.: Anosov AdS representations are quasi-Fuchsian. Groups, Geometry, Dynamics 6(3), 441–483 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bochi, J., Potrie, R., Sambarino, A.: Anosov representations and dominated splittings. Journal European Mathematical Society (JEMS) 21(11), 3343–3414 (2019)

    Article  MathSciNet  Google Scholar 

  9. Danciger, J., Guéritaud, F., Kassel, F.: Convex cocompactness in pseudo-riemannian hyperbolic spaces. Geom. Dedicata. 192, 87–126 (2017)

    Article  MathSciNet  Google Scholar 

  10. Frances, C.: Lorentzian kleinian groups. Comment. Math. Helv. 80(4), 883–910 (2005)

    Article  MathSciNet  Google Scholar 

  11. Frances, C.: Géométrie et Dynamique Lorentziennes Conformes. Theses, Ecole Normal Supérieure de Lyon (2002)

    Google Scholar 

  12. Frances, C.: Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique. Enseign. Math. (2) 49(1–2), 95–100 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Geroch, R.P.: The domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    Article  MathSciNet  Google Scholar 

  14. Guichard, Olivier, Kassel, Fanny, Wienhard Anna: Tameness of riemannian locally symmetric spaces arising from anosov representations. arXiv:1508.04759, (2015)

  15. Guivarch, Y.: Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire. Ergodic Theory Dynam. Systems 10(3), 483–512 (1990)

    Article  MathSciNet  Google Scholar 

  16. Guéritaud, F., Guichard, O., Kassel, F., Wienhard, A.: Anosov representations and proper actions. Geometry & Topology 21(1), 485–584 (2017)

    Article  MathSciNet  Google Scholar 

  17. Helgason, Sigurdur: Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2001). Corrected reprint of the 1978 original

  18. Kapovich, Ilya, Benakli Nadia: Boundaries of hyperbolic groups. In: Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., pages 39–93. Amer. Math. Soc., Providence, RI, (2002)

  19. Kapovich, M., Leeb, B., Porti, J.: Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. Geom. Topol. 22(1), 157–234 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kapovich, M., Leeb, B., Porti, J.: A morse lemma for quasigeodesics in symmetric spaces and euclidean buildings. Geometry & Topology 22(7), 3827–3923 (2018)

    Article  MathSciNet  Google Scholar 

  21. Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  Google Scholar 

  22. Labourie, François, Toulisse, Jérémy, Wolf, Michael: Plateau problems for maximal surfaces in pseudo-hyperbolic spaces, (2020)

  23. Leray, Jean: Hyperbolic differential equations. Mimeographed notes, (1952)

  24. Weinhard, A., Guichard, O.: Anosov representations: domain of discontinuity and applications. Invent. Math. 190(2), 357–438 (2012)

    Article  MathSciNet  Google Scholar 

  25. Salvemini, Clara Rossi: Espace-temps globalement hyperboliques conformément plats. PhD thesis, Université d’Avignon, (2012)

  26. Salvemini, C.R.: Maximal extension of conformally flat globally hyperbolic spacetimes. Geom. Dedicata. 174, 235–260 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Smaï.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaï, R. Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes. Geom Dedicata 216, 45 (2022). https://doi.org/10.1007/s10711-022-00705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-022-00705-7

Keywords

Mathematics Subject Classification

Navigation