Skip to main content
Log in

Bottom of the \(L^2\) spectrum of the Laplacian on locally symmetric spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We estimate the bottom of the \(L^2\) spectrum of the Laplacian on locally symmetric spaces in terms of the critical exponents of appropriate Poincaré series. Our main result is the higher rank analog of a characterization due to Elstrodt, Patterson, Sullivan and Corlette in rank one. It improves upon previous results obtained by Leuzinger and Weber in higher rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The symbol \(f\asymp g\) between two non-negative expressions means that there exist constants \(0<A\le B<+\infty \) such that \(Ag\le f\le Bg\).

  2. As observed by the referee, Lemma 3 still holds without the torsion-free assumption, provided that \(\gamma \) runs through \(\varGamma \backslash (\varGamma \cap {K})\).

References

  1. Albuquerque, P.: Patterson–Sullivan theories in higher rank symmetric spaces. Geom. Funct. Anal. 9, 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  2. Amri, B., Anker, J.-Ph., Sifi, M.: Three results in Dunkl analysis. Colloq. Math. 118(1), 299–312 (2010)

    Article  MathSciNet  Google Scholar 

  3. Anker, J.-P.: \(L_p\) Fourier multipliers on Riemannian symmetric spaces of the noncompact type. Ann. Math. (2) 132(3), 597–628 (1990)

    Article  MathSciNet  Google Scholar 

  4. Anker, J.-P.: The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan. J. Funct. Anal. 96(2), 331–349 (1991)

    Article  MathSciNet  Google Scholar 

  5. Anker, J.-P.: Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. Duke Math. J. 65(2), 257–297 (1992)

    Article  MathSciNet  Google Scholar 

  6. Anker, J.-P., Ji, L.: Heat kernel and Green function estimates on noncompact symmetric spaces. Geom. Funct. Anal. 9, 1035–1091 (1999)

    Article  MathSciNet  Google Scholar 

  7. Anker, J.-P., Ostellari, P.: The heat kernel on noncompact symmetric spaces. In: Gindikin S.G. (eds) Lie Groups and Symmetric Spaces (in Memory of F.I. Karpelevich). Amer. Math. Soc. Transl. (2), vol. 210, pp. 27–46. Amer. Math. Soc., Providence (2003)

  8. Corlette, K.: Hausdorff dimensions of limit sets I. Invent. Math. 102(3), 521–541 (1990)

    Article  MathSciNet  Google Scholar 

  9. Davies, E.B., Mandouvalos, N.: Heat kernel bounds on hyperbolic space and Kleinian groups. Proc. Lond. Math. Soc. (3) 57(1), 182–208 (1988)

    Article  MathSciNet  Google Scholar 

  10. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I. Math. Ann. 203, 295–330 (1973)

    Article  MathSciNet  Google Scholar 

  11. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene II. Math. Z. 132, 99–134 (1973)

    Article  MathSciNet  Google Scholar 

  12. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene III. Math. Ann. 208, 99–132 (1974)

    Article  MathSciNet  Google Scholar 

  13. Helgason, S.: Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions). Academic Press, Orlando (1984)/Amer. Math. Soc, Providence (2000)

  14. Knapp, A.: Lie Groups Beyond an Introduction. Progress Math., vol. 140, 2nd edn. Birkäuser, Basel (2002)

    MATH  Google Scholar 

  15. Knieper, G.: On the asymptotic geometry of nonpositively curved manifolds. Geom. Funct. Anal. 7(4), 755–782 (1997)

    Article  MathSciNet  Google Scholar 

  16. Leuzinger, E.: Kazhdan’s property (T), \(L^2\) spectrum and isoperimetric inequalities for locally symmetric spaces. Comment. Math. Helv. 78, 116–133 (2003)

    Article  MathSciNet  Google Scholar 

  17. Leuzinger, E.: Critical exponents of discrete groups and \(L^2\)-spectrum. Proc. Am. Math. Soc. 132(3), 919–927 (2004)

    Article  MathSciNet  Google Scholar 

  18. Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136(3–4), 241–273 (1976)

    Article  MathSciNet  Google Scholar 

  19. Strömberg, J.-O.: Weak type \(L^1\) estimates for maximal functions on non-compact symmetric spaces. Ann. Math. (2) 114(1), 115–126 (1981)

    Article  MathSciNet  Google Scholar 

  20. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Differ. Geom. 25(3), 327–351 (1987)

    Article  MathSciNet  Google Scholar 

  21. Weber, A.: Heat kernel bounds, Poincaré series, and \(L^2\) spectrum for locally symmetric spaces. Bull. Aust. Math. Soc. 78(1), 73–86 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for checking carefully the manuscript and making several helpful suggestions of improvement. The second author acknowledges financial support from the University of Orléans during his Ph.D. and from the Methusalem Programme Analysis and Partial Differential Equations during his postdoc stay at Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Anker.

Additional information

In memory of Michel Marias (1953–2020), who introduced us to locally symmetric spaces.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anker, JP., Zhang, HW. Bottom of the \(L^2\) spectrum of the Laplacian on locally symmetric spaces. Geom Dedicata 216, 3 (2022). https://doi.org/10.1007/s10711-021-00662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-021-00662-7

Keywords

Mathematics Subject Classification

Navigation