Skip to main content
Log in

Complete classification of pseudo H-type algebras: II

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We classify a class of 2-step nilpotent Lie algebras related to the representations of the Clifford algebras in the following way. Let \(J:{{\mathrm{\mathrm {Cl}}}}({\mathbb {R}}^{r,s})\rightarrow {{\mathrm{End}}}(U)\) be a representation of the Clifford algebra \({{\mathrm{\mathrm {Cl}}}}({\mathbb {R}}^{r,s})\) generated by the pseudo Euclidean vector space \({\mathbb {R}}^{r,s}\). Assume that the Clifford module U is endowed with a bilinear symmetric non-degenerate real form \(\langle \cdot \,,\cdot \rangle _U\) making the linear map \(J_z\) skew symmetric for any \(z\in {\mathbb {R}}^{r,s}\). The Lie algebras and the Clifford algebras are related by \(\langle J_zv,w\rangle _U=\langle z,[v,w]\rangle _{{\mathbb {R}}^{r,s}}\), \(z\in {\mathbb {R}}^{r,s}\), \(v,w\in U\). We detect the isomorphic and non-isomorphic Lie algebras according to the dimension of U and the range of the non-negative integers rs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Cortés, V.: Classification of \(N\)-(super)-extended algebras and bilinear invariants of the spinor representation of \(Spin(p, q)\). Commun. Math. Phys. 183(3), 477–510 (1997)

    Article  MATH  Google Scholar 

  2. Altomani, A., Santi, A.: Classification of maximal transitive prolongations of super-Poincaré algebras. Adv. Math. 265, 60–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.S., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Autenried, C., Furutani, K., Markina, I., Vasiliev, A.: Pseudo-metric 2-step nilpotent Lie algebras. Adv. Geom. 18(2), 237–263 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbano, P.E.: Automorphisms and quasi-conformal mappings of Heisenberg-type groups. J. Lie Theory 8(2), 255–277 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Bauer, W., Furutani, K., Iwasaki, C.: Spectral zeta function on pseudo H-type nilmanifolds. Indian J. Pure Appl. Math. 46(4), 539–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellaïche, A., Risler, J.J.: Sub-Riemannian geometry. In: Bellaïche, A., Risler, J.-J. (eds.) Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996)

    Google Scholar 

  8. Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek–Ricci Harmonic Spaces. Lecture Notes in Mathematics, vol. 1598. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  9. Bieske, T., Gong, J.: The P-Laplace equation on a class of Grushin-type spaces. Proc. Am. Math. Soc. 134(12), 3585–3594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calin, O., Chang, D.C., Furutani, K., Iwasaki, C.: Heat Kernels for Elliptic and Sub-elliptic Operators: Methods and Techniques. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2011)

    Book  MATH  Google Scholar 

  11. Ciatti, P.: Scalar products on Clifford modules and pseudo-\(H\)-type Lie algebras. Ann. Mat. Pura Appl. 178(4), 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, G., Dodziuk, J.: Integral structures on H-type Lie algebras. J. Lie Theory 12(1), 69–79 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Cowling, M., Dooley, A.H., Korányi, A., Ricci, F.: \(H\)-type groups and Iwasawa decompositions. Adv. Math. 87(1), 1–41 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. del Barco, V.: Homogeneous geodesics in pseudo-Riemannian nilmanifolds. Adv. Geom. 16(2), 175–187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eberlein, P.: Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. École Norm. Sup. (4) 27(5), 611–660 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eberlein, P.: Riemannian submersion and lattices in 2-step nilpotent Lie groups. Commun. Anal. Geom. 11(3), 441–488 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Furutani, K., Markina, I.: Existence of the lattice on general \(H\)-type groups. J. Lie Theory 24, 979–1011 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Furutani, K., Markina, I.: Complete classification of pseudo \(H\)-type algebras: I. Geom. Dedicata 190, 23–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Godoy Molina, M., Korolko, A., Markina, I.: Sub-semi-Riemannian geometry of general \(H\)-type groups. Bull. Sci. Math. 137(6), 805–833 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heinonen, J.: Calculus on Carnot groups. Fall School in Analysis (Jyväskylä, 1994), pp. 1–31, Report, 68. Univ. Jyväskylä, Jyväskylä (1995)

  21. Husemoller, D.: Fibre Bundles. Graduate Texts in Mathematics, vol. 20, 2nd edn, p. 327. Springer, New York (1975)

    Google Scholar 

  22. Kobayashi, T., Yoshino, T.: Compact Clifford–Klein forms of symmetric spaces—revisited. Pure Appl. Math. Q. 1(3), 591–663 (2005). (Special Issue: In memory of Armand Borel. Part 2)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258(1), 147–153 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11, 127–136 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaplan, A., Tiraboschi, A.: Automorphisms of non-singular nilpotent Lie algebras. J. Lie Theory 23(4), 1085–1100 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Kocsard, A., Ovando, G.P., Reggiani, S.: On first integrals of the geodesic flow on Heisenberg nilmanifolds. Differ. Geom. Appl. 49, 496–509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lam, T.Y.: The Algebraic Theory of Quadratic Forms. Mathematics Lecture Note Series, p. 344. W. A. Benjamin, Inc., Reading (1973)

    Google Scholar 

  28. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38, p. 427. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  29. Malćev, A.I.: On a class of homogeneous spaces. Am. Math. Soc. Translation 39, (1951); Izv. Akad. Nauk USSR Ser. Mat. 13, 9–32 (1949)

  30. Pansu, P.: Carnot–Carathéodory metrics and quasi-isometries of rank-one symmetric spaces. Ann. Math. (2) 129(1), 1–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Riehm, C.: The automorphism group of a composition of quadratic forms. Trans. Am. Math. Soc. 269(2), 403–414 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saal, L.: The automorphism group of a Lie algebra of Heisenberg type. Rend. Sem. Mat. Univ. Politec. Torino 54(2), 101–113 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Tamaru, H., Yoshida, H.: Lie groups locally isomorphic to generalized Heisenberg groups. Proc. Am. Math. Soc. 136(9), 3247–3254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Markina.

Additional information

The first author was partially supported by the Grant-in-aid for Scientific Research (C) No. 17K05284, JSPS, and the second author was partially supported by ISP Project 239033/F20 of NRC, as well as the joint Project 267630/F10 between DAAD and NRC.

Appendix

Appendix

We give the collections \(PI_{r,s}\) and \(CO_{r,s}\) for basic cases (2.8) grouped in four tables. The dimensions of \(E_{r,s}\) and signature of the scalar product restricted to \(E_{r,s}\) are listed. First we mention trivial cases.

$$\begin{aligned}&PI_{1,0}=PI_{0,1}=PI_{2,0}=PI_{1,1}=PI_{0,2}=PI_{2,1}=PI_{0,3}=\emptyset ,\\&PI_{3,0}=PI_{1,2}=\{P=J_{z_1}J_{z_2}J_{z_3}\},\quad CO_{3,0}=CO_{1,2}=\emptyset . \end{aligned}$$

For the cases (rs) of \(r-s\equiv 3 \,(\text {mod}~4)\) and s even, there is no complementary operator which commutes with all the involutions in \(PI_{r,s}\) except the last involution which is of the form \(\mathcal {P}_3\) or \(\mathcal {P}_4\) and anti-commutes with the last involution. In these cases the operator \(J_{\Omega ^{r,s}}\) is a product of involutions in \(PI_{r,s}\) and it commutes with all the operators \(J_{z_k}\). This is the reason for the number of complementary operators to be \(p_{r,s}-1\). The last operator in \(PI_{r,s}\) of the form \(\mathcal {P}_3\) or \(\mathcal {P}_4\) distinguishes the two different minimal admissible modules.

The signature of the admissible scalar product restricted on the space \(E_{r,s}\) is sign definite in Table 6 and is neutral for signatures (rs) in Table 7. The latter can be seen by finding an additional negative operator other than operators in \(CO_{r,s}\) which commutes with all the involutions in \(PI_{r,s}\) (Tables 4, 5, 6).

Table 4 Systems \(PI_{r,0}\) and \(CO_{r,0}\), \(r=4,\ldots ,7\)
Table 5 Systems \(PI_{r,4}\) and \(CO_{r,4}\), \(r=0,1,2\)
Table 6 Systems \(PI_{3,s}\) and \(CO_{3,s}\), \(s=1,\ldots ,7\) and \(PI_{7,s}\), \(CO_{7,s}\), \(s=1,2,3\)
Table 7 Systems \(PI_{r,s}\) and \(CO_{r,s}\) for Proposition 2.9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furutani, K., Markina, I. Complete classification of pseudo H-type algebras: II. Geom Dedicata 202, 233–264 (2019). https://doi.org/10.1007/s10711-018-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0411-9

Keywords

Mathematics Subject Classification (2010)

Navigation