Skip to main content
Log in

Persistence barcodes and Laplace eigenfunctions on surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We obtain restrictions on the persistence barcodes of Laplace–Beltrami eigenfunctions and their linear combinations on compact surfaces with Riemannian metrics. Some applications to uniform approximation by linear combinations of Laplace eigenfunctions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. These are sometimes refered to as pointwise finite dimensional persistence modules.

  2. Our definition is slightly different from the one in [36] since we do not assume that \(\int _{M} f~\sigma =0\) if M has no boundary. However, this assumption is not needed for any of the results of [36] which we use.

  3. Formally speaking, \(F_k\) should be a small perturbation of \(f_k+1\) in order to make it Morse, but we will ignore this detail for the sake of clarity.

References

  1. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: Proceedings of the thirtieth annual symposium on computational geometry, ACM, pp. 464–473 (2014)

  2. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6(2), 162–191 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Bauer, U., Munch, E., Wang, Y.: Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. In: 31st international symposium on computational geometry, pp. 461–475. LIPIcs, Leibniz Int. Proc. Inform., vol. 34, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2015)

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10, 198 (2016)

    Article  MathSciNet  Google Scholar 

  6. Buhovsky, L.: Private communication (2018)

  7. Cammarota, V., Marinucci, D., Wigman, I.: On the distribution of the critical values of random spherical harmonics. J. Geom. Anal. 26(4), 3252–3324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canzani, Y., Sarnak, P.: Topology and nesting of the zero set components of monochromatic random waves, to appear in Communications of Pure and Applied Mathematics. arXiv:1701.00034

  9. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer (2016)

  11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(L_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  15. Edelsbrunner, H.: A Short Course in Computational Geometry and Topology. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  16. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feichtinger, H., Führ, H., Pesenson, I.: Geometric space-frequency analysis on manifolds. J. Fourier Anal. Appl. 22(6), 1294–1355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ganzburg, M.: Multidimensional Jackson theorems. Siber. Math. J. 22(2), 223–231 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gayet, D., Welschinger, J.-Y.: Universal components of random nodal sets. Commun. Math. Phys. 347(3), 777–797 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gayet, D., Welschinger, J.-Y.: Betti numbers of random nodal sets of elliptic pseudo-differential operators. Asian J. Math. 21(5), 811–839 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45, 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jakobson, D., Nadirashvili, N., Toth, J.: Geometric properties of eigenfunctions. Russ. Math. Surv. 56(6), 1085–1105 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kronrod, A. S.: On functions of two variables (in Russian), Uspekhi Matem. Nauk (N.S.) 35:24–134 (1950)

  24. Lin, F., Liu, D.: On the Betti numbers of level sets of solutions to elliptic equations. Discret. Contin. Dyn. Syst. 36(8), 4517–4529 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. of Math. (2) 187(1), 221–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. of Math. (2) 187(1), 241–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Logunov, A., Malinnikova, E.: Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three. 50 years with Hardy spaces, pp. 333–344. Oper. Theory Adv. Appl., 261, Springer, Cham (2018)

  28. Nazarov, F., Sodin, M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131(5), 1337–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nicolaescu, L.: Critical sets of random smooth functions on compact manifolds. Asian J. Math. 19(3), 391–432 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  31. Pausinger, F., Steinerberger, S.: On the distribution of local extrema in Quantum Chaos. Phys. Lett. A 379, 535–541 (2015)

    Article  MATH  Google Scholar 

  32. Pesenson, I.: Approximations in \(L_p\)-norms and Besov spaces on compact manifolds. Trends in Harmonic Analysis and its Applications, pp. 199–209, Contemp. Math., 650, American Mathematical Society, Providence (2015)

  33. Pinkus, A.: Negative theorems in approximation theory. Am. Math. Mon. 110(10), 900–911 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poliquin, G.: Superlevel sets and nodal extrema of Laplace–Beltrami eigenfunctions. J. Spectrom. Theory 7(1), 111–136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polterovich, L., Shelukhin, E., Stojisavljević, V.: Persistence modules with operators in Morse and Floer theory. Moscow Math. J. 17(4), 757–786 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Polterovich, L., Sodin, M.: Nodal inequalities on surfaces. Math. Proc. Camb. Philos. Soc. 143(2), 459–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2–3), 287–308 (2010)

    Article  Google Scholar 

  38. Salem, R.: On a theorem of Bohr and Pál. Bull. Am. Math. Soc. 50, 579–580 (1944)

    Article  MATH  Google Scholar 

  39. Sarnak, P., Wigman, I.: Topologies of nodal sets of random band limited functions. In: Advances in the theory of automorphic forms and their L-functions, 351–365, Contemp. Math., 664, American Mathematical Society, Providence (2016)

  40. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: Computer vision and pattern recognition workshops (CVPRW), IEEE, pp. 45–52 (2010)

  41. Sogge, C.: Concerning the \( L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Usher, M.: Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds. Isr. J. Math. 184, 1–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Usher, M., Zhang, J.: Persistent homology and Floer–Novikov theory. Geom. Topol. 20(6), 3333–3430 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weinberger, S.: What is... persistent homology? Not. Am. Math. Soc. 58, 36–39 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Weinberger, S.: Interpolation, the rudimentary geometry of Lipschitz function spaces, and geometric complexity, Preprint (2017)

  46. Yomdin, Y.: Global bounds for the Betti numbers of regular fibers of differentiable mappings. Topology 24, 145–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yudin, V.A.: A multidimensional Jackson theorem. Mat. Zametki 20(3), 439–444 (1976)

    MathSciNet  Google Scholar 

  48. Zelditch, S.: Local and global properties of eigenfunctions. Adv. Lect. Math. 7, 545–658 (2008)

    MATH  Google Scholar 

  49. Zelditch, S.: Eigenfunctions and nodal sets. Surv. Differ. Geom. 18, 237–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Lev Buhovsky for providing Example 1.4.12 that has lead to a reformulation of Conjectures 1.4.7 and 1.4.8 . The authors would like to thank Yossi Azar, Allan Pinkus and Justin Solomon for useful discussions, as well as Lev Buhovsky and Mikhail Sodin for helpful remarks on the early version of the paper. We also thank Yuliy Baryshnikov for bringing the reference [11] to our attention. Part of this research was accomplished while I.P. was supported by the Weston Visiting Professorship program at the Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Polterovich.

Additional information

I. Polterovich: Partially supported by NSERC, FRQNT and Canada Research Chairs program.

L. Polterovich, V. Stojisavljević: Partially supported by the European Research Council Advanced Grant 338809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polterovich, I., Polterovich, L. & Stojisavljević, V. Persistence barcodes and Laplace eigenfunctions on surfaces. Geom Dedicata 201, 111–138 (2019). https://doi.org/10.1007/s10711-018-0383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0383-9

Keywords

Mathematics Subject Classification

Navigation