Skip to main content
Log in

Remarks on the \({\mathrm {CH}}_2\) of cubic hypersurfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

This paper presents two approaches to reducing problems on 2-cycles on a smooth cubic hypersurface X over an algebraically closed field of characteristic \(\ne 2\), to problems on 1-cycles on its variety of lines F(X). The first one relies on osculating lines of X and Tsen-Lang theorem. It allows to prove that \({\mathrm {CH}}_2(X)\) is generated, via the action of the universal \({\mathbb {P}}^1\)-bundle over F(X), by \({\mathrm {CH}}_1(F(X))\). When the characteristic of the base field is 0, we use that result to prove that if \(dim(X)\ge 7\), then \({\mathrm {CH}}_2(X)\) is generated by classes of planes contained in X and if \(dim(X)\ge 9\), then \({\mathrm {CH}}_2(X)\simeq {\mathbb {Z}}\). Similar results, with slightly weaker bounds, had already been obtained by Pan (Math Ann 1–28, 2016). The second approach consists of an extension to subvarieties of X of higher dimension of an inversion formula developped by Shen (J Algebraic Geom 23:539–569, 2014, Rationality, universal generation and the integral Hodge conjecture, arXiv:1602.07331) in the case of 1-cycles of X. This inversion formula allows to lift torsion cycles in \({\mathrm {CH}}_2(X)\) to torsion cycles in \({\mathrm {CH}}_1(F(X))\). For complex cubic 5-folds, it allows to prove that the birational invariant provided by the group \({\mathrm {CH}}^3(X)_{tors,AJ}\) of homologically trivial, torsion codimension 3 cycles annihilated by the Abel–Jacobi morphism is controlled by the group \({\mathrm {CH}}_1(F(X))_{tors,AJ}\) which is a birational invariant of F(X), possibly always trivial for Fano varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, A.B., Kleiman, S.L.: Foundation of the theory of the Fano schemes. Compos. Math. 34(1), 3–47 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. 3(25), 75–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth, W., Van de Ven, A.: Fano-varieties of lines on hypersurfaces. Archiv. Math. 31, 96–104 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beauville, A.: Variétés de Prym et Jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. 10(4), 309–391 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Bloch, S.: Torsion algebraic cycles and a theorem of Roitman. Comp. Math. 39, 107–127 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. Sér. 4(7), 181–201 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloch, S., Srinivas, V.: Remarks on orrespondences and algebraic cycles. Am. J. of Math. 105, 1235–1253 (1983)

    Article  MATH  Google Scholar 

  9. Clemens, H., Griffiths, P.: The intermediate Jacobian of the cubic threefold. Ann. of Math. 95, 281–356 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colliot-Thélène, J.-L.: Birational invariants, purity and the Gersten conjecture. In: K-theory and algebraic geometry : connections with quadratic forms and divis ion algebras, AMS Summer Research Institute, Santa Barbara 1992, ed. W. Jacob and A. Ro senberg, Proceedings of Symposia in Pure Mathematics 58, Part I pp. 1–64 (1995)

  11. Colliot-Thélène, J.-L., Ojanguren, M.: Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford. Invent. math. 97(1), 141–158 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50, 763–801 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colliot-Thélène, J.-L., Voisin, C.: Cohomologie non ramifiée et conjecture de Hodge entière. Duke Math. J. 161(5), 735–801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Debarre, O., Manivel, L.: Sur la variété des espaces linéaires contenus dans une intersection complète. Math. Ann. 312, 549–574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esnault, H., Levine, M., Viehweg, E.: Chow groups of projective varieties of very small degree. Duke Math. J. 87, 29–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W.: Intersection Theory, Second edn (1998), Ergebnisse der Math. und ihrer Grenzgebiete 3 Folge, Band 2, Springer, Berlin (1998)

  17. Harris, J., Roth, M., Starr, J.: Abel–Jacobi maps associated to smooth cubic three-folds, arXiv:math/0202080

  18. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1977)

    Book  Google Scholar 

  19. Hartshorne, R.: Complete intersections and connectedness. Am. J. Math. 84(3), 497–508 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hironaka, H.: Smoothing of algebraic cycles of small dimensions. Am. J. Math. 90, 1–54 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iliev, A., Markushevich, D.: The Abel–Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14. Doc. Math. 5, 23–47 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Kahn, B., Sujatha, R.: Unramified cohomology of quadrics, II. Duke Math. J. 106, 449–484 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Math. und ihrer Grenzgebiete 3 Folge, Band 32, Springer, Berlin (1996)

  24. Lang, S.: On quasi algebraic closure. Ann. Math. 55(2), 373–390 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markushevich, D., Tikhomirov, A.: The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold. J. Algebr. Geom. 10, 37–62 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Moonen, B., Polishchuk, A.: Divided powers in Chow rings and integral Fourier transforms. Adv. Math. 224(5), 216–2236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murre, J.: Algebraic equivalence modulo rational equivalence on a cubic threefold. Comp. Math. 25(2), 161–206 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Otwinowska, A.: Remarques sur les groupes de Chow des hypersurfaces de petit degré. C. R. Acad. Sci. Paris Sér. I Math. 329(1), 51–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan, X.: \(2\)-cycles on higher Fano hypersurfaces. Math. Ann. 367(3–4), 1791–1818 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roitman, A.A.: The torsion of the group of \(0\)-cycles modulo rational equivalence. Ann. Math. 111(3), 553–569 (1980)

    Article  MathSciNet  Google Scholar 

  31. Schnell, C.: Hypersurfaces containing a given subvariety, online lecture notes

  32. Shen, M.: On relations among \(1\)-cycles on cubic hypersurfaces. J. Algebraic Geom. 23, 539–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, M.: Rationality, universal generation and the integral Hodge conjecture, arXiv:1602.07331

  34. Shimada, I.: On the cylinder homomorphism for a family of algebraic cycles. Duke Math. J. 64, 201–205 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Starr, J.: Brauer Groups and Galois Cohomology of Function Fields of Varieties, Lecture notes, (2008)

  36. Tian, Z., Zong, R.: One-cycles on rationally connected varieties. Compos. Math. 150(3), 396–408 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Totaro, B.: The Integral Cohomology of the Hilbert Scheme of Two Points, arXiv:1506.00968

  38. Voisin, C.: Hodge Theory and Complex Algebraic Geometry II, Cambridge Studies in Advanced Mathematics 77. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  39. Voisin, C.: Some aspects of the Hodge conjecture. Jpn. J. Math. 2, 261–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Voisin, C.: Remarks on curve classes on rationally connected varieties. In: A Cel- ebration of Algebraic Geometry, Clay Math. Proc. 18, pp. 591–599, AMS, Providence, RI, (2013)

  41. Voisin, C.: Degree \(4\) unramified cohomology with finite coefficients and torsion codimension \(3\) cycles, in Geometry and Arithmetic, (C. Faber, G. Farkas, R. de Jong Eds), Series of Congress Reports, EMS, pp. 347–368 (2012)

  42. Voisin, C.: Stable Birational Invariants and the Lüroth Problem, Surveys in Differential Geometry XXI (2016)

Download references

Acknowledgements

I am grateful to my advisor Claire Voisin for having brought to me this interesting question, as well as her kind help and great and patient guidance during this work. I am also grateful to Mingmin Shen for pointing me a deficiency in the original proof of Theorem 3.8. I would like to thank Jean-Louis Colliot-Thélène for sharing with me the reference [22] where the vanishing of \(H_{nr}^4(X,{\mathbb {Q}}/{\mathbb {Z}})\) when X is a cubic 5-fold is proved. Finally, I am grateful to the gracious Lord for His care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Mboro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mboro, R. Remarks on the \({\mathrm {CH}}_2\) of cubic hypersurfaces. Geom Dedicata 200, 1–25 (2019). https://doi.org/10.1007/s10711-018-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0355-0

Keywords

Mathematics Subject Classification

Navigation