Skip to main content
Log in

Numerical invariants of surfaces in \({\mathbb P}^4\) lying on small degree hypersurfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

An analogue of the Ellingsrud–Peskine finiteness result is obtained and the Albanese dimension is studied for smooth surfaces in \({\mathbb P}^4\) of non-negative Kodaira dimension that lie on a hypersurface of degree at most 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. On a surface, a saturated subsheaf of a locally free sheaf is reflexive, hence locally free; see [13, Proposition 5.22].

  2. If \({\mathcal {O}}_X(D)\subset \varOmega _X^1\), then for any positive integer n, any three global sections of \({\mathcal {O}}_X(nD)\) are algebraically dependent.

  3. The sheaf \({\mathcal {F}}\) is D-semistable if \(\dfrac{c_1({\mathcal {F}}')}{r_{{\mathcal {F}}'}}\cdot D \le \dfrac{c_1({\mathcal {F}})}{r_{{\mathcal {F}}}}\cdot D\), for any non-zero subsheaf \({\mathcal {F}}'\subset {\mathcal {F}}\).

References

  1. Aure, A.B.: The smooth surfaces on cubic hypersurface in \({\mathbb{P}}^4\) with isolated singularities. Math. Scand. 67, 215–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ballico, E., Chiantini, L.: On smooth subcanonical varieties of codimension \(2\) in \({\mathbb{P}}^n\), \(n\ge 4\). Ann. Mat. Pura Appl. (4) 135, 99–117 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beauville, A.: Surfaces algébriques complexes, Astérisque, vol. 54. Société Mathématique de France, Paris (1978)

    MATH  Google Scholar 

  4. Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, vol. 16. de Gruyter, Berlin (1995)

    Book  Google Scholar 

  5. Bogomolov, F.: Holomorphic tensors and vector bundles on projective varieties. Math. URSS Isvestija 13, 499–555 (1979)

    Article  MATH  Google Scholar 

  6. Decker, W., Schreyer, F.-O.: Non-general type surfaces in \({\mathbb{P}}^4\): some remarks on bounds and constructions. J. Symb. Comput. 29, 545–582 (2000)

    Article  MATH  Google Scholar 

  7. Degtyarëv, A.I.: Classification of quartic surfaces that have a nonsimple singular point. Izv. Akad. Nauk SSSR Ser. Mat. 53(6), 1269–1290, 1337–1338 (1989) (Russian); translation in Math. USSR-Izv. 35(3), 607–627 (1990)

  8. Degtyarëv, A.I.: Classification of Quartics Having a Nonsimple Singular Point. II. Topology of Manifolds and Varieties, Advances in Soviet Mathematics, vol. 18, pp. 23–54. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  9. Ellingsrud, G., Peskine, C.: Sur les surfaces lisses de \({\mathbb{P}}^4\). Invent. Math. 95, 1–11 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New-York (1977)

    Book  Google Scholar 

  11. Huh, J.: Milnor numbers of projective hypersurfaces with isolated singularities. Duke Math. J. 163, 1525–1548 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ionescu, P.: Embedded projective varieties of small invariants. In: Algebraic geometry, Bucharest 1982. Lecture Notes in Mathematics, vol. 1056, pp. 142–186. Springer, Berlin (1984)

  13. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton (1987)

    Book  MATH  Google Scholar 

  14. Koelblen, L.: Surfaces de \({\mathbb{P}}^4\) tracées sur une hypersurface cubique. J. Reine Angew. Math. 433, 113–141 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Lanteri, A.: On the existence of scrolls in \({\mathbb{P}}^4\) (Italian summary). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 69, 223–227 (1980)

    MathSciNet  Google Scholar 

  16. Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268, 159–171 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Naie, D., Reider, I.: Twisted Kodaira–Spencer classes and the geometry of surfaces of general type. J. Algebr. Geom. 23, 165–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Naie, D., Reider, I.: Surfaces in \({\mathbb{P}}^4\) lying on small degree hypersurfaces. arXiv:1609.03706

  19. Roth, L.: On the projective classification of surfaces. Proc. Lond. Math. Soc. 42, 142–170 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wall, C.T.C.: Sextic curves and quartic surfaces with higher singularities. Unpublished manuscript (1999)

  21. Yang, J.-G.: Enumeration of combinations of rational double points on quartic surfaces (English summary). In: Singularities and Complex Geometry (Beijing, 1994). AMS/IP Studies in Advanced Mathematics, vol. 5, pp. 275–312. American Mathematical Society, Providence (1997)

  22. Zak, F.L.: The structure of Gauss mappings. Funct. Anal. Appl. 21, 32–41 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper grew form the work [18] that Igor Reider and I archived in 2016; we have decided to split it into several pieces for publication. I would like to express my deep gratitude to Igor for the time we spent together talking about and struggling with the geometry of surfaces embedded in \({\mathbb P}^4\). From him I have learned how to use the extension construction to go back and forth between the extrinsic and the intrinsic geometry of such a surface. This technique permeates the whole paper. I would like to thank Michel Granger and Paltin Ionescu for the friendly and useful talks we had. Finally, I would like to express my appreciation for the referee’s careful reading of and detailed suggestions concerning a preliminary version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Naie.

Bogomolov filtration

Bogomolov filtration

For the sake of the exposition and lack of a convenient reference for the Bogomolov filtration of a coherent sheaf, we prove Lemma A.2 below. Let X be a smooth complex projective surface. We denote by \({\text {NS}}(X)\) the Néron–Severi group of X. The intersection product defines an integral quadratic form on \({\text {NS}}(X)\). By the Hodge Index Theorem, its real extension to \(N(X)={\text {NS}}(X)\otimes _{\mathbb Z}{\mathbb R}\) is of type \((1,\rho -1)\), with \(\rho \) the Picard number of X. The positive cone of X is the open cone

$$\begin{aligned} N^+(X)= & {} \{D\in N(X) \mid D^2>0,H\cdot D>0,\\&\text { for some (hence every) ample divisor class }H\text { on }X\}. \end{aligned}$$

It contains the ample cone and is contained in the cone of effective divisors. For \({\mathcal {F}}\) a coherent sheaf on X of rank \(r=r_{\mathcal {F}}\), the discriminant of \({\mathcal {F}}\) is the expression

$$\begin{aligned} \varDelta ({\mathcal {F}}) = 2r\,c_2({\mathcal {F}})-(r-1)\,c_1^2({\mathcal {F}}). \end{aligned}$$

Theorem A.1

(Bogomolov, [5]) Let \({\mathcal {F}}\) be a torsion free coherent sheaf on a surface X. If \(\varDelta ({\mathcal {F}})<0\), then there exists a maximal non-trivial saturated subsheaf \({\mathcal {F}}'\) such that

  • \(\varDelta ({\mathcal {F}}')\ge 0\),

  • \(\dfrac{c_1({\mathcal {F}}')}{r_{{\mathcal {F}}'}}-\dfrac{c_1({\mathcal {F}})}{r_{{\mathcal {F}}}} \in N^+(X)\) and \(\bigg ( c_1({\mathcal {F}}')-\dfrac{r_{{\mathcal {F}}'}}{r_{\mathcal {F}}}\,c_1({\mathcal {F}}) \bigg )^{2} \ge -\dfrac{\varDelta ({\mathcal {F}})}{2r_{\mathcal {F}}}\).

In particular, if \({\mathcal {F}}\) is D-semistableFootnote 3 with respect to an ample divisor D, then \(\varDelta ({\mathcal {F}})\ge 0\).

A torsion free sheaf is called Bogomolov unstable if \(\varDelta ({\mathcal {F}})<0\) and Bogomolov semistable if \(\varDelta ({\mathcal {F}})\ge 0\). The theorem asserts that a torsion free Bogomolov unstable sheaf contains a maximal Bogomolov semistable subsheaf which destabilizes it with respect to every polarization. Such a subsheaf is called a maximal Bogomolov destabilizing subsheaf of the given sheaf.

Lemma A.2

Let \({\mathcal {F}}\) be a locally free sheaf on the surface X. There exists a unique Bogomolov filtration of \({\mathcal {F}}\),

$$\begin{aligned} 0={\mathcal {F}}_0 \subset {\mathcal {F}}_1 \subset \cdots \subset {\mathcal {F}}_m={\mathcal {F}}\end{aligned}$$

such that for each \(1\le i\le m\), \({\mathcal {F}}_i/{\mathcal {F}}_{i-1}\) is the maximal Bogomolov destabilizing subsheaf of \({\mathcal {F}}_j/{\mathcal {F}}_{i-1}\) for every \(j>i\).

Proof

We argue by induction on the rank \(r={\text {rank}}({\mathcal {F}})\). For \(r=1\) the statement is obvious, since by definition locally free sheaves of rank 1 are Bogomolov semistable. So we assume \(r\ge 2\) and suppose that the theorem holds for all locally free sheaves of inferior rank. Furthermore, we can assume that \({\mathcal {F}}\) is Bogomolov unstable (since otherwise there is nothing to prove).

Let \({\mathcal {F}}_1\) be a maximal Bogomolov destabilizing subsheaf of \({\mathcal {F}}\). By assumption, \({\mathcal {F}}_1\ne {\mathcal {F}}\). Since \({\mathcal {F}}_1\) is saturated, the quotient \({\mathcal {F}}/{\mathcal {F}}_1\) is torsion free, and therefore \({\mathcal {F}}_1\) is reflexive (see [13, Proposition 5.22]), hence locally free, since X is a surface. Now, if the quotient \({\mathcal {F}}/{\mathcal {F}}_1\) is Bogomolov stable, the filtration reduces to \(0={\mathcal {F}}_0\subset {\mathcal {F}}_1\subset {\mathcal {F}}_2={\mathcal {F}}\) and we are done. If not, the quotient \({\mathcal {F}}/{\mathcal {F}}_1\) has the rank strictly smaller than r and hence the theorem holds for (the reflexive hull or the double dual of) \({\mathcal {F}}/{\mathcal {F}}_1\). Hence \(\left( {\mathcal {F}}/{\mathcal {F}}_1\right) ^{**}\) admits a unique Bogomolov filtration. Lifting this filtration to \({\mathcal {F}}\) gives the desired filtration of \({\mathcal {F}}\). It is enough to describe the procedure for the lifting of the maximal Bogomolov destabilizing subsheaf, call it \({\mathcal {G}}'\), of \({\mathcal {F}}/{\mathcal {F}}_1\) and then apply it inductively for other pieces of the Bogomolov filtration of \(\left( {\mathcal {F}}/{\mathcal {F}}_1\right) ^{**}\).

Let \({\mathcal {G}}''\) be the quotient of the inclusion \({\mathcal {G}}' \subset {\mathcal {F}}/{\mathcal {F}}_1\). We have the diagram

figure s

where \({\mathcal {F}}_2\) is the kernel of the epimorphism \({\mathcal {F}}\rightarrow {\mathcal {G}}''\). As before, in this short exact sequence \({\mathcal {F}}\) is locally free and \({\mathcal {G}}''\) is torsion free, hence \({\mathcal {F}}_2\) is locally free. Clearly \({\mathcal {F}}_1\subset {\mathcal {F}}_2\) and \({\mathcal {G}}'\simeq {\mathcal {F}}_2/{\mathcal {F}}_1\). We must show that \({\mathcal {F}}_2\) is Bogomolov unstable and that \({\mathcal {F}}_1\) is a maximal Bogomolov destabilizing subsheaf of \({\mathcal {F}}_2\).

Set \(r={\text {rank}}({\mathcal {F}})\), \(r_j={\text {rank}}({\mathcal {F}}_j)\), and \(r_{{\mathcal {G}}'}={\text {rank}}({\mathcal {G}}')\). Since

$$\begin{aligned} \begin{aligned} \frac{c_1({\mathcal {F}}_2)}{r_2}-\frac{c_1({\mathcal {F}})}{r}&= \bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}})}{r}\bigg ) -\bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}}_2)}{r_2}\bigg )\\&= \bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}})}{r}\bigg ) -\frac{r_{{\mathcal {G}}'}}{r_2}\bigg ( \frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {G}}')}{r_{{\mathcal {G}}'}} \bigg )\\&= \bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}})}{r}\bigg ) -\frac{r_{{\mathcal {G}}'}}{r_2}\bigg ( \frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}}/{\mathcal {F}}_1)}{r-r_1} \bigg )\\&\quad +\frac{r_{{\mathcal {G}}'}}{r_2}\bigg ( \frac{c_1({\mathcal {G}}')}{r_{{\mathcal {G}}'}}-\frac{c_1({\mathcal {F}}/{\mathcal {F}}_1)}{r-r_1} \bigg )\\&= \bigg (1-\frac{r_{{\mathcal {G}}'}}{r_2}\frac{r}{r-r_1}\bigg ) \bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}})}{r}\bigg ) +\frac{r_{{\mathcal {G}}'}}{r_2}\bigg ( \frac{c_1({\mathcal {G}}')}{r_{{\mathcal {G}}'}}-\frac{c_1({\mathcal {F}}/{\mathcal {F}}_1)}{r-r_1} \bigg )\\&= \frac{r(r-r_2)}{r(r-r_1)} \bigg (\frac{c_1({\mathcal {F}}_1)}{r_1}-\frac{c_1({\mathcal {F}})}{r}\bigg ) +\frac{r_{{\mathcal {G}}'}}{r_2}\bigg ( \frac{c_1({\mathcal {G}}')}{r_{{\mathcal {G}}'}}-\frac{c_1({\mathcal {F}}/{\mathcal {F}}_1)}{r-r_1} \bigg ), \end{aligned} \end{aligned}$$

we see that \(c_1({\mathcal {F}}_2)/r_2-c_1({\mathcal {F}})/r\in N^+(X)\). Hence \(\varDelta ({\mathcal {F}}_2)<0\), since otherwise \({\mathcal {F}}_2\) would be a Bogomolov destabilizing subsheaf of \({\mathcal {F}}\) and this contradicts the maximality of \({\mathcal {F}}_1\).

We have constructed a Bogomolov unstable subsheaf \({\mathcal {F}}_2\) of \({\mathcal {F}}\) and we claim that \({\mathcal {F}}_1\) is its maximal Bogomolov destabilizing subsheaf. Indeed, if \({\mathcal {F}}_1\) is not a maximal Bogomolov destabilizing subsheaf of \({\mathcal {F}}_2\), then there exists a Bogomolov semistable (locally free) subsheaf \({\mathcal {F}}'\) such that \({\mathcal {F}}_1\subset {\mathcal {F}}'\subset {\mathcal {F}}_2\) and such that \(c_1({\mathcal {F}}')/r'-c_1({\mathcal {F}}_2)/r_2\in N^+(X)\). But then, by the previous argument,

$$\begin{aligned} \frac{c_1({\mathcal {F}}')}{r'}-\frac{c_1({\mathcal {F}})}{r} = \bigg (\frac{c_1({\mathcal {F}}')}{r'}-\frac{c_1({\mathcal {F}}_2)}{r_2}\bigg ) +\bigg (\frac{c_1({\mathcal {F}}_2)}{r_2}-\frac{c_1({\mathcal {F}})}{r}\bigg ) \in N^+(X), \end{aligned}$$

contradicting the maximality of \({\mathcal {F}}_1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naie, D. Numerical invariants of surfaces in \({\mathbb P}^4\) lying on small degree hypersurfaces. Geom Dedicata 199, 147–175 (2019). https://doi.org/10.1007/s10711-018-0343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0343-4

Keywords

Mathematics Subject Classification

Navigation