Skip to main content
Log in

Subgroups of mapping class groups related to Heegaard splittings and bridge decompositions

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(M=H_1\cup _S H_2\) be a Heegaard splitting of a closed orientable 3-manifold M (or a bridge decomposition of a link exterior). Consider the subgroup \({\text {MCG}}^0(H_j)\) of the mapping class group of \(H_j\) consisting of mapping classes represented by orientation-preserving auto-homeomorphisms of \(H_j\) homotopic to the identity, and let \(G_j\) be the subgroup of the automorphism group of the curve complex \(\mathcal {CC}(S)\) obtained as the image of \({\text {MCG}}^0(H_j)\). Then the group \(G=\langle G_1, G_2\rangle \) generated by \(G_1\) and \(G_2\) acts on \(\mathcal {CC}(S)\) with each orbit being contained in a homotopy class in M. In this paper, we study the structure of the group G and examine whether a homotopy class can contain more than one orbit. We also show that the action of G on the projective lamination space of S has a non-empty domain of discontinuity when the Heegaard splitting satisfies R-bounded combinatorics and has high Hempel distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry. Universitext. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  2. Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math. 124, 71–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowditch, B.: Tight geodesics in the curve complex. Invent. Math. 171, 281–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brock, J., Minsky, Y., Namazi, H., Souto, J.: Bounded combinatorics and uniform models for hyperbolic 3-manifolds. J. Topol. arXiv:Math.1312.2293

  5. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

    Book  Google Scholar 

  6. Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of thurston. In: Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984). London Mathematical Society Lecture Note Series, vol. 111, pp. 3–92. Cambridge University Press, Cambridge (1987)

  7. Coornaert, M., Delzant, T., Papadopoulos, A.: Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. Lecture Notes in Mathematics, vol. 1441, Springer, Berlin (1990)

  8. Farb, B., Marglit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series. Princeton University Press, Princeton (2011)

    Google Scholar 

  9. Gordon C.: Problems. In: Gordon, C., Moriah, Y. (eds.) Workshop on Heegaard splittings (Technion Summer 2005), Geom. Topol. Monogr. 12, 401–411. Geom. Topol. Publ. Conventry (2007)

  10. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. In: Lafontaine, J., Pansu, P. (eds.) Translated from the French by Sean Michael Bates, Progress in Mathematics, vol. 152. Birkhäuser Boston Inc, Boston (1999)

  11. Ivanov, N.V.: Mapping class groups. In: Handbook of Geometric Topology, pp. 523–633. North- Holland, Amsterdam (2002)

  12. Johnson, J.: Mapping class groups of medium distance Heegaard splittings. Proc. Am. Math. Soc. 138, 4529–4535 (2010)

    Article  MATH  Google Scholar 

  13. Kerckhoff, S.: The measure of the limit set of the handlebody group. Topology 29, 27–40 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korkmaz, M.: Automorphisms of complexes of curves on punctured spheres and on punctured tori. Topol. Appl. 95(2), 85–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lecuire, C.: An extension of the Masur domain. In: Spaces of Kleinian groups, London Mathematical Society Lecture Note Series, vol. 329, pp. 49–73. Cambridge University Press, Cambridge (2006)

  16. Lecuire, C.: Bending map and strong convergence. (preprint). http://www.math.univ-toulouse.fr/lecuire/properness

  17. Lee, D., Sakuma, M.: Simple loops on 2-bridge spheres in 2-bridge link complements. Electron. Res. Announc. Math. Sci. 18, 97–111 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lee, D., Sakuma, M.: Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres. Proc. Lond Math. Soc. 104, 359–386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, D., Sakuma, M.: A variation of McShane’s identity for 2-bridge links. Geom. Topol. 17, 2061–2101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, D., Sakuma, M.: Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I), (II) and (III). Geom. Dedic. 171, 1–28 (2014), ibid. 29–56, ibid. 57–91

  21. Luo, F.: Automorphisms of the complex of curves. Topology 39(2), 283–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masur, H.: Measured foliations and handlebodies. Ergod. Theory Dyn. Syst. 6, 99–116 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Masur, H., Minsky, Y.: Geometry of the curve complex I: hyperbolicity. Invent. Math. 138, 103–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Masur, H., Minsky, Y.: Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10, 902–974 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Masur, H., Minsky, Y.: Quasiconvexity in the curve complex. In: Abikoff, W., Haas, A. (eds.) The tradition of Ahlfors and Bers, III, Contemporary Mathematics, vol. 355, pp. 309–320. American Mathematical Society, Providence RI (2004)

  26. Minsky, Y.: On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds. J. Am. Math. Soc. 7, 539–588 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Namazi, H.: Heeggard Splittings and Hyperbolic Geometry. Thesis, Stony Brook University (2005)

  28. Namazi, H.: Big Heegaard distance implies finite mapping class group. Topol. Appl. 154, 2939–2949 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Namazi, H.: Heegaard splittings with bounded combinatorics. (in preparation)

  30. Namazi, H., Souto, J.: Heegaard splittings and pseudo-Anosov maps. Geom. Funct. Anal. 19(4), 1195–1228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Namazi, H., Souto, J.: Non-realizability and ending laminations: proof of the density conjecture. Acta Math. 209(2), 323–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ohshika, K.: Kleinian groups which are limits of geometrically finite groups. Mem. Am. Math. Soc. 177, 834 (2005)

    MathSciNet  Google Scholar 

  33. Ohshika, K.: Discrete groups, translated from the 1998 Japanese original by the author. Translations of mathematical monographs, vol. 207, Iwanami Series in Modern Mathematics, American Mathematical Society, Providence RI (2002)

  34. Ohshika, K.: Realising end invariants by limits of minimally parabolic, geometrically finite groups. Geom. Topol. 15, 827–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ohtsuki, T., Riley, R., Sakuma, M.: Epimorphisms between 2-bridge link groups. Geom. Topol. Monogr. 14, 417–450 (2008)

    Article  MathSciNet  Google Scholar 

  36. Otal, J.-P.: Courants géodésiques et produits libres. Thèse d’Etat, Université de Paris-Sud, Orsay (1988)

  37. Sakuma, M.: Problem session. In: Kitano, T. (ed.) Geometric and analytic approaches to representations of a group and representation spaces, vol. 1777, pp. 110–112. RIMS Kokyuroku (2012)

  38. Thurston, W.: The geometry and topology of three-manifolds. Lecture Notes. http://library.msri.org/books/gt3m/

  39. Tian, G.: A pinching theorem on manifolds with negative curvature. (preprint)

  40. Watanabe, Y.: Local finiteness of the curve graph via subsurface projections and a uniform bound of tight geodesics. arXiv:1312.5040

  41. Webb, R. C. H.: Combinatorics of tight geodesics and stable lengths. Trans. Amer. Math. Soc. arXiv:1305.3566

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Ohshika.

Additional information

The first author was supported by JSPS Grants-in-Aid 22654008. The second author was supported by JSPS Grants-in-Aid 21654011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshika, K., Sakuma, M. Subgroups of mapping class groups related to Heegaard splittings and bridge decompositions. Geom Dedicata 180, 117–134 (2016). https://doi.org/10.1007/s10711-015-0094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0094-4

Keywords

Mathematics Subject Classification (2010)

Navigation