Skip to main content
Log in

Compactifications of character varieties and skein relations on conformal blocks

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(M_C(G)\) be the moduli space of semistable principal G-bundles over a smooth curve C. We show that a flat degeneration of this space \(M_{C_{\Gamma }}(G)\) associated to a singular stable curve \(C_{\Gamma }\) contains the free group character variety \({\mathcal {X}}(F_g, G)\) as a dense open subset, where \(g = genus(C).\) In the case \(G = SL_2({\mathbb {C}})\) we describe the resulting compactification explicitly, and in turn we conclude that the coordinate ring of \(M_{C_{\Gamma }}(SL_2({\mathbb {C}}))\) is presented by homogeneous skein relations. Along the way, we prove the parabolic version of these results over stable, marked curves \((C_{\Gamma }, \vec {p}_{\Gamma })\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Sel. Math. 10(4), 453–478 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abe, T.: Projective normality of the moduli space of rank 2 vector bundles on a generic curve. Trans. Amer. Math. Soc. 362(1), 477–490 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhosle, U., Biswas, I., Hurtubise, J.: Grassmannian-framed bundles and generalized parabolic structures. Int. J. Math. 24(12), 1350090 (2013)

    Article  MathSciNet  Google Scholar 

  4. Buczyńska, W., Buczyński, J., Kubjas, K., Michałek, M.: On the graph labellings arising from phylogenetics. Cent. Eur. J. Math. 11(9), 1577–1592 (2013)

    MATH  MathSciNet  Google Scholar 

  5. Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), volume 9 of Israel Math. Conf. Proc., pp. 75–96. Bar-Ilan Univ., Ramat Gan (1996)

  6. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Communications in Mathematical Physics 164(2), 385–419 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buczyńska, W.: Phylogenetic toric varieties on graphs. J. Algebr. Comb. 35(3), 421–460 (2012)

    Article  Google Scholar 

  8. Buczyńska, W., Wiśniewski, J.A.: On geometry of binary symmetric models of phylogenetic trees. J. Eur. Math. Soc. (JEMS) 9(3), 609–635 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Faltings, G.: Semistable vector bundles on Mumford curves. Invent. Math. 74(2), 199–212 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Faltings, G.: A proof for the Verlinde formula. J. Algebr. Geom. 3(2), 347–374 (1994)

    MATH  MathSciNet  Google Scholar 

  11. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Florentino, C., Lawton, S.: Character varieties and moduli of quiver representations. In: In the tradition of Ahlfors-Bers. VI, volume 590 of Contemp. Math., pp. 9–38. Amer. Math. Soc., Providence, RI (2013)

  13. Florentino, C.: Schottky uniformization and vector bundles over Riemann surfaces. Manuscripta Math. 105(1), 69–83 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gieseker, D.: A degeneration of the moduli space of stable bundles. J. Differ. Geom. 19(1), 173–206 (1984)

    MATH  MathSciNet  Google Scholar 

  15. Grosshans, F.D.: Algebraic Homogeneous Spaces and Invariant Theory, volume 1673 of Lecture Notes in Mathematics. Springer, Berlin (1997)

  16. Hurtubise, J., Jeffrey, L., Sjamaar, R.: Group-valued implosion and parabolic structures. Am. J. Math. 128(1), 167–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jeffrey, L.C., Weitsman, J.: Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Communications in Mathematical Physics 150(3), 593–630 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirwan, F.: Symplectic implosion and nonreductive quotients. In: Geometric aspects of analysis and mechanics, volume 292 of Progr. Math, pp. 213–256. Birkhäuser/Springer, New York (2011)

  19. Kubjas, K., Manon, C.: Conformal blocks, Berenstein–Zelevinsky triangles, and group-based models. J. Algebr. Comb. 40(3), 861–886 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of \(G\)-bundles. Mathematische Annalen 300(1), 41–75 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89(2), 395–423 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Looijenga, E.: Conformal blocks revisited. arXiv:math/0507086 [math.AG]

  23. Lawton, S., Peterson, E.: Spin networks and \({\rm SL}(2, {\mathbb{C}})\)-character varieties. In: Handbook of Teichmüller theory. Vol. II, volume 13 of IRMA Lect. Math. Theor. Phys, pp. 685–730. Eur. Math. Soc., Zürich (2009)

  24. Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections. Ann. Sci. École Norm. Sup. 30(4), 499–525 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Manon, C.: The algebra of conformal blocks. arXiv:0910.0577v6, (2009)

  26. Manon, C.: The algebra of \(SL_3(\mathbb{C})\) conformal blocks. Transform. Groups 18(4), 1165–1187 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Manon, C.: Toric geometry of \(SL_2(\mathbb{C})\) free group character varieties from outer space. arXiv:1410.0072 [math.AG], (2014)

  28. Musiker, G., Schiffler, R., Williams, L.: Bases for cluster algebras from surfaces. Compos. Math. 149(2), 217–263 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Annals of Mathematics 82, 540–567 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84(1), 217–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Przytycki, Józef H., Sikora, Adam S.: On skein algebras and \({\rm Sl}_2({{\bf C}})\)-character varieties. Topology 39(1), 115–148 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sturmfels, B., Velasco, M.: Blow-ups of \({\mathbb{P}}^{n-3}\) at \(n\) points and spinor varieties. J. Commut. Algebra 2(2), 223–244 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sturmfels, B., Xu, Z.: Sagbi bases of Cox–Nagata rings. J. Eur. Math. Soc. (JEMS) 12(2), 429–459 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, volume 19 of Advanced Studies in Pure Math., pp. 459–566. Academic Press Inc., Boston (1989)

  35. Ueno, K.: Introduction to conformal field theory with gauge symmetries. In Geometry and physics (Aarhus, 1995), volume 184 of Lecture Notes in Pure Appl. Math., pp. 603–745. Dekker, New York (1997)

Download references

Acknowledgments

We thank Sean Lawton for many useful conversations about free group character varieties, Neil Epstein for his helpful remarks on Rees algebras, Geir Agnarsson for sharing his knowledge of graph theory, and Steven Sam for a helpful discussion on the material in Sect. 9.4. We thank Kaie Kubjas and Nick Early for useful remarks on an earlier version of this manuscript, and the reviewers for suggesting we look at the work of Florentino [13] and Faltings [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Manon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manon, C. Compactifications of character varieties and skein relations on conformal blocks. Geom Dedicata 179, 335–376 (2015). https://doi.org/10.1007/s10711-015-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0084-6

Keywords

Mathematics Subject Classification

Navigation