Skip to main content
Log in

Hierarchical non-dominated sort: analysis and improvement

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Pareto dominance-based multiobjective evolutionary algorithms use non-dominated sorting to rank their solutions. In the last few decades, various approaches have been proposed for non-dominated sorting. However, the running time analysis of some of the approaches has some issues and they are imprecise. In this paper, we focus on one such algorithm namely hierarchical non-dominated sort (HNDS), where the running time is imprecise and obtain the generic equations that show the number of dominance comparisons in the worst and the best case. Based on the equation for the worst case, we obtain the worst-case running time as well as the scenario where the worst case occurs. Based on the equation for the best case, we identify a scenario where HNDS performs less number of dominance comparisons than that presented in the original paper, making the best-case analysis of the original paper unrigorous. In the end, we present an improved version of HNDS which guarantees the claimed worst-case time complexity by the authors of HNDS which is \({\mathcal {O}}(MN^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Algorithm 4
Algorithm 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Two datasets—Cloud dataset and Fixed front dataset are used in this paper which are commonly used for non-dominated sorting problem. The process to generate the data is mentioned in the relevant section.

References

  1. Y. Tian, H. Wang, X. Zhang, Y. Jin, Effectiveness and efficiency of non-dominated sorting for evolutionary multi-and many-objective optimization. Complex Intell. Syst. 3(4), 247–263 (2017)

    Article  Google Scholar 

  2. Q. Long, X. Wu, C. Wu, Non-dominated sorting methods for multi-objective optimization: review and numerical comparison. J. Ind. Manag. Optim. 17(2), 1001 (2021)

    Article  MathSciNet  Google Scholar 

  3. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. C. Bao, L. Xu, E.D. Goodman, L. Cao, A novel non-dominated sorting algorithm for evolutionary multi-objective optimization. J. Comput. Sci. 23, 31–43 (2017)

    Article  MathSciNet  Google Scholar 

  5. P. Nigam, S. Mishra, Counterexample to the best-case running time of efficient non-dominated sorting algorithm, in Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2022) (2022), pp. 798–800

  6. X. Zhang, Y. Tian, R. Cheng, J. Yaochu, An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evolut. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  7. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms. Evolut. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  8. W. Habenicht, Quad trees, a datastructure for discrete vector optimization problems, in Essays and Surveys on Multiple Criteria Decision Making: International Conference on Multiple Criteria Decision Making (Springer, 1983), pp. 136–145

  9. M. Sun, R.E. Steuer, Quad-trees and linear lists for identifying nondominated criterion vectors. INFORMS J. Comput. 8(4), 367–375 (1996)

    Article  Google Scholar 

  10. S. Mostaghim, J. Teich, Quad-trees: a data structure for storing pareto sets in multiobjective evolutionary algorithms with elitism, in Evolutionary Multiobjective Optimization: Theoretical Advances and Applications (Springer, 2005), pp. 81–104

  11. M. Sun, R.E. Steuer, InterQuad: an interactive quad tree based procedure for solving the discrete alternative multiple criteria problem. Eur. J. Oper. Res. 89(3), 462–472 (1996)

    Article  Google Scholar 

  12. J.E. Fieldsend, R.M. Everson, S. Singh, Using unconstrained elite archives for multiobjective optimization. IEEE Trans. Evolut. Comput. 7(3), 305–323 (2003)

    Article  Google Scholar 

  13. O. Schütze, A new data structure for the nondominance problem in multi-objective optimization, in International Conference on Evolutionary Multi-Criterion Optimization (Springer, 2003), pp. 509–518

  14. X. Chen, Pareto tree searching genetic algorithm: approaching pareto optimal front by searching pareto optimal tree. Technical Report NK-CS-2001-002, 1–10 (2001)

  15. M. Drozdik, Y. Akimoto, H. Aguirre, K. Tanaka, Computational cost reduction of nondominated sorting using the M-Front. IEEE Trans. Evolut. Comput. 19(5), 659–678 (2015)

    Article  Google Scholar 

  16. A. Jaszkiewicz, T. Lust, ND-Tree-based update: a fast algorithm for the dynamic nondominance problem. IEEE Trans. Evolut. Comput. 22(5), 778–791 (2018)

    Article  Google Scholar 

  17. K. McClymont, E. Keedwell, Deductive sort and climbing sort: new methods for non-dominated sorting. Evolut. Comput. 20(1), 1–26 (2012)

    Article  Google Scholar 

  18. P. Gustavsson, A. Syberfeldt, A new algorithm using the non-dominated tree to improve non-dominated sorting. Evolut. Comput. 26(1), 89–116 (2018)

    Article  Google Scholar 

  19. X. Zhang, Y. Tian, R. Cheng, Y. Jin, A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evolut. Comput. 22(1), 97–112 (2018)

    Article  Google Scholar 

  20. S. Mishra, S. Saha, S. Mondal, Divide and conquer based non-dominated sorting for parallel environment, in IEEE Congress on Evolutionary Computation (CEC’2016) (IEEE Press, 2016), pp. 4297–4304. ISBN: 978-1-5090-0623-6

  21. S. Mishra, S. Saha, S. Mondal, C.A. Coello Coello, A divide-and-conquer based efficient non-dominated sorting approach. Swarm Evolut. Comput. 44, 748–773 (2019)

    Article  Google Scholar 

  22. J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  23. J.A. Storer, An Introduction to Data Structures and Algorithms (Springer, Birkhäuser, Boston, 2001)

    Google Scholar 

  24. F.L. Heller, A.L. Tharp, The* M-ary Tree and* ternary hillsort, in Proceedings of the 1992 ACM Annual Conference on Communications (1992), pp. 41–48

  25. Y. Zhou, Z. Chen, J. Zhang, Ranking vectors by means of the dominance degree matrix. IEEE Trans. Evolut. Comput. 21(1), 34–51 (2017)

    Article  Google Scholar 

  26. P.C. Roy, M.M. Islam, K. Deb, Best order sort: a new algorithm to non-dominated sorting for evolutionary multi-objective optimization, in Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2016) (ACM Press, Denver, 2016), pp. 1113–1120. ISBN: 978-1-4503-4323-7

  27. S. Mishra, S. Saha, S. Mondal, MBOS: modified best order sort algorithm for performing non-dominated sorting, in IEEE Congress on Evolutionary Computation (CEC’2018) (IEEE Press, Rio de Janeiro, 2018), pp. 725–732. ISBN: 978-1-5090-6017-7

  28. S. Mishra, S. Mondal, S. Saha, C.A. Coello Coello, GBOS: generalized best order sort algorithm for non-dominated sorting. Swarm Evolut. Comput. 43, 244–264 (2018)

    Article  Google Scholar 

  29. P.C. Roy, K. Deb, M.M. Islam, An efficient nondominated sorting algorithm for large number of fronts. IEEE Trans. Cybern. 99, 1–11 (2018)

    Google Scholar 

  30. J. Moreno, D. Rodriguez, A.J. Nebro, J.A. Lozano, Merge nondominated sorting algorithm for many-objective optimization. IEEE Trans. Cybern. 51(12), 6154–6164 (2020)

    Article  Google Scholar 

  31. H.-T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)

    Article  MathSciNet  Google Scholar 

  32. M.T. Jensen, Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evolut. Comput. 7(5), 503–515 (2003)

    Article  Google Scholar 

  33. F.-A. Fortin, S. Greiner, M. Parizeau, Generalizing the improved run-time complexity algorithm for non-dominated sorting, in Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2013) (ACM Press, New York, 2013), pp. 615–622. ISBN: 978-1-4503-1963-8

  34. M. Buzdalov, A. Shalyto, A provably asymptotically fast version of the generalized Jensen algorithm for non-dominated sorting, in International Conference on Parallel Problem Solving from Nature—PPSN XIII (Springer, Ljubljana, 2014), pp. 528–537

  35. M. Buzdalov, Make evolutionary multiobjective algorithms scale better with advanced data structures: Van Emde Boas tree for non-dominated sorting, in International Conference on Evolutionary Multi-Criterion Optimization (EMO’2019) (Springer, East Lansing, 2019), pp. 66–77. ISBN: 978-3-030-12597-4

  36. P. Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue. Math. Syst. Theory 10(1), 99–127 (1976)

    Article  MathSciNet  Google Scholar 

  37. P. Emde Boas, Preserving order in a forest in less than logarithmic time, in Annual Symposium on Foundations of Computer Science (SFCS’1975) (IEEE, 1975), pp. 75–84

  38. H. Fang, Q. Wang, Y.-C. Tu, M.F. Horstemeyer, An efficient non-dominated sorting method for evolutionary algorithms. Evolut. Comput. 16(3), 355–384 (2008)

    Article  Google Scholar 

  39. S. Mishra, S. Saha, S. Mondal, C.A. Coello Coello, Divide-and-conquer based non-dominated sorting with reduced comparisons. Swarm Evolut. Comput. 51, 100580 (2019)

    Article  Google Scholar 

  40. S. Mishra, M. Buzdalov, If unsure, shuffle: deductive sort is \(\Theta (MN^3)\), but \({\cal{O}}(MN^2)\) in expectation over input permutations, in Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2020) (2020), pp. 516–523

  41. S. Mishra, V. Prakash, Time complexity analysis of the deductive sort in the best case, in Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO’2021) (2021), pp. 337–338

  42. S. Mishra, M. Buzdalov, R. Senwar, Time complexity analysis of the dominance degree approach for non-dominated sorting, in Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO’2020) (2020), pp. 169–170

  43. J. Wang, C. Li, Y. Diao, S. Zeng, H. Wang, An efficient nondominated sorting algorithm, in Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2018) (ACM, 2018), pp. 203–204

  44. S. Mishra, M. Buzdalov, Filter sort is \(\Omega (N^3)\) in the worst case, in International Conference on Parallel Problem Solving from Nature—PPSN XVI (Springer, 2020), pp. 675–685

  45. V. Prakash, S. Mishra, C.A. Coello Coello, On the computational complexity of efficient non-dominated sort using binary search, in International Conference on Evolutionary Multi-Criterion Optimization (EMO’2023) (Springer, 2023), pp. 419–432

  46. H. Wang, X. Yao, Corner sort for Pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)

    Article  Google Scholar 

  47. R.F. Alexandre, C.H.N.D.R. Barbosa, J.A.D. Vasconcelos, LONSA: a labeling-oriented non-dominated sorting algorithm for evolutionary many-objective optimization. Swarm Evolut. Comput. 38, 275–286 (2018)

    Article  Google Scholar 

Download references

Funding

No funding is involved for this work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have written the manuscript text and reviewed it. First author has prepared the figures.

Corresponding author

Correspondence to Ved Prakash.

Ethics declarations

Conflict of interest

The authors declare through the submission of this document that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Supporting materials

Appendix 1: Supporting materials

$$\begin{aligned} T_{\texttt {presort}}&= M \left[ \sum _{k=1}^{K} \left( N - \left( n_1 + n_2 + \ldots + n_{k-1} \right) \right) \log \left( N - \left( n_1 + n_2 + \ldots + n_{k-1} \right) \right) \right] \nonumber \\&\le M \left[ \sum _{k=1}^{K} N \log N \right] \nonumber \\&= M \left[ \sum _{k=1}^{N} N \log N \right] \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text { as maximum value of } K \text { is } N \nonumber \\&= M \left( N^2\log N \right) = {\mathcal {O}}(MN^2\log N) \end{aligned}$$
(33)
$$\begin{aligned} A_w&= \sum _{k=1}^{K} \Psi _kn_k = \sum _{k=1}^{K} \left[ N - \left( n_1 + n_2 + \cdots + n_{k-1} \right) \right] n_k \nonumber \\&= \sum _{k=1}^{K} Nn_k - \sum _{k=1}^{K} \left( n_1 + n_2 + \cdots + n_{k-1} \right) n_k \nonumber \\&= N \sum _{k=1}^{K} n_k - \left[ \left( n_1 \right) n_2 + \left( n_1+n_2 \right) n_3 + \cdots \right. \nonumber \\&\quad +\left. \left( n_1 + n_2 + \cdots + n_{k-1} \right) n_k \right] \nonumber \\&= N^2 - \left[ \left( n_1n_2 + n_1n_3 + \cdots + n_1n_k \right) \right. \nonumber \\&\quad +\left. \left( n_2n_3 + n_2n_4 + \cdots + n_2n_k \right) + \cdots + \left( n_{k-1}n_k \right) \right] \nonumber \\&= N^2 + \frac{1}{2}\left( n_1^2 + n_2^2 +\ldots + n_K^2 \right) - \frac{1}{2}\left( n_1^2 + n_2^2 + \cdots + n_K^2 \right) \nonumber \\&\quad - \left[ \left( n_1n_2 + n_1n_3 + \cdots + n_1n_k \right) + \left( n_2n_3 + n_2n_4 + \cdots + n_2n_k \right) + \cdots \right. \nonumber \\&\quad + \left. \left( n_{k-1}n_k \right) \right] \nonumber \\&= N^2 + \frac{1}{2}\left( n_1^2 + n_2^2+ \cdots + n_K^2 \right) - \frac{1}{2}\left( n_1 + n_2 + \cdots + n_K \right) ^2 \nonumber \\&= N^2 + \frac{1}{2} \sum _{k=1}^{K} n_k^2 - \frac{1}{2}N^2 = \frac{1}{2}N^2 + \frac{1}{2} \sum _{k=1}^{K} n_k^2 \end{aligned}$$
(34)
$$\begin{aligned} T_{\texttt {presort}}&= M \left[ \sum _{k=1}^{N} \left( N-k+1 \right) \log \left( N-k+1 \right) \right] \nonumber \\&\le M \left[ \sum _{k=1}^{N} \left( N-k+1 \right) \log N \right] \nonumber \\&= M \log N \left[ \sum _{k=1}^{N} \left( N-k+1 \right) \right] \nonumber \\&= \frac{1}{2}MN\left( N+1 \right) \log N = {\mathcal {O}}(MN^2 \log N) \end{aligned}$$
(35)
$$\begin{aligned} T_{\texttt {presort}}&= M \left[ \sum _{k=1}^{K} \left( N - \left( n_1 + n_2 + \cdots + n_{k-1} \right) \right) \log \left( N - \left( n_1 + n_2 + \cdots + n_{k-1} \right) \right) \right] \nonumber \\&\le M \left[ \sum _{k=1}^{K} N \log N \right] \nonumber \\&= M \left( KN\log N \right) = {\mathcal {O}}(MKN\log N) \end{aligned}$$
(36)
$$\begin{aligned} A_b&= \sum _{k=1}^{K} \left( \Psi _k-1 \right) = \sum _{k=1}^{K} \left[ N - \left( n_1 + n_2 + \cdots + n_{k-1} \right) - 1 \right] \nonumber \\&= \sum _{k=1}^{K} \left( N-1 \right) - \sum _{k=1}^{K} \left( n_1 + n_2 + \cdots + n_{k-1} \right) \nonumber \\&= \left( N-1 \right) K - \left[ \left( K-1 \right) n_1 + \left( K-2 \right) n_2 + \cdots + n_{K-1} \right] \nonumber \\&= \left( N-1 \right) K - \left[ \left( n_1+n_2+\cdots +n_{K-1} \right) K \right. \nonumber \\&\quad -\left. \left( n_1+2n_2+\cdots +(K-1)n_{K-1} \right) \right] \nonumber \\&= \left( N-1 \right) K - \left[ \left( N-n_K\right) K - \sum _{k=1}^{K-1}kn_k \right] \nonumber \\&= \left( n_K-1 \right) K + \sum _{k=1}^{K-1}kn_k \end{aligned}$$
(37)
$$\begin{aligned} B_b&= \frac{1}{2} \sum _{k=1}^{K} \left( n_k-1 \right) \left( n_k-2 \right) = \frac{1}{2} \sum _{k=1}^{K} \left( n_k^2 -3n_k \right) + \frac{1}{2} \sum _{k=1}^{K} 2 \nonumber \\&= K +\frac{1}{2} \sum _{k=1}^{K} \left( n_k^2 -3n_k \right) \end{aligned}$$
(38)

See Tables 3 and 4.

Table 3 Points in three fronts such that all the points in a front is only dominated by the last point (last point based on the lexicographical sort) in its preceding front
Table 4 Points in three fronts such that all the points in a front is only dominated by the first point (first point based on the lexicographical sort) in its preceding front

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, V., Mishra, S. Hierarchical non-dominated sort: analysis and improvement. Genet Program Evolvable Mach 25, 14 (2024). https://doi.org/10.1007/s10710-024-09487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10710-024-09487-1

Keywords

Navigation