Skip to main content
Log in

Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Reversible acetylation of core histones plays an important role in the epigenetic regulation of gene transcription, and is controlled by the action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). While HDACs have been well studied in Drosophila melanogaster, information from insect pests is still limited. In the current study, we cloned and characterized three class I enzymes, TcHDAC1, TcHDAC 3 and TcHDAC 8, in the red flour beetle, Tribolium castaneum. Expression profiling showed that T. castaneum HDAC genes are expressed in all developmental stages and tissues examined. A dramatic increase of mRNA expression level was observed from prepupae to 1-day-old pupae for all three T. castaneum HDAC genes. Both TcHDAC1 and TcHDAC3 exhibited the highest mRNA expression levels in thorax, whereas TcHDAC8 was highly expressed in fat body. Furthermore, T. castaneum HDAC genes were found to respond to heat, cold and oxidative stresses. While the heat-stress treatment decreased the mRNA expression levels of T. castaneum HDAC genes, their transcripts were induced by paraquat treatment. These results suggest a possible role for class I HDAC genes in the epigenetic regulation of T. castaneum development and stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achary BG, Campbell KM, Co IS, Gilmour DS (2014) RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock. Biochim Biophys Acta 1839:355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995

    Article  CAS  PubMed  Google Scholar 

  • Carré C, Szymczak D, Pidoux J, Antoniewski C (2005) The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis. Mol Cell Biol 25:8228–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Sun H, Lu J, Zhao Y, Tao D, Li X, Huang B (2002) Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Arch Biochem Biophys 408:171–176

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Griswold A, Campbell C, Min KT (2005) Individual histone deacetylases in Drosophila modulate transcription of distinct genes. Genomics 86:606–617

    Article  CAS  PubMed  Google Scholar 

  • Fogg PC, O’Neill JS, Dobrzycki T, Calvert S, Lord EC, McIntosh RL, Elliott CJ, Sweeney ST, Hastings MH, Chawla S (2014) Class IIa histone deacetylases are conserved regulators of circadian function. J Biol Chem 289:34341–34348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    Article  CAS  PubMed  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haliscak JP, Beeman RW (1983) Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat and oats in the United States. J Econ Entomol 76:717–722

    Article  CAS  Google Scholar 

  • Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Characterization and expression of the b-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochem Mol Biol 38:478–489

    Article  CAS  PubMed  Google Scholar 

  • Johnson CA, Barlow AL, Turner BM (1998) Molecular cloning of Drosophila melanogaster cDNAs that encode a novel histone deacetylase dHDAC3. Gene 221:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Shu Y, Zhou J, Zhang X, Zhang X, Chen M, Yao Q, Zhou Q, Zhang W (2015) Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål). J Insect Physiol 73:20–29

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang B, Liu C, Tong B, Guan T, Xia D (2017) Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. Plant Sci 265:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mannervik M, Levine M (1999) The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci USA 96:6797–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MA, Hagelkruys A, Seiser C (2014) Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123:67–78

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Fischer R, Vilcinskas A (2012) Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool 9:25–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oger F, Dubois F, Caby S, Noël C, Cornette J, Bertin B, Capron M, Pierce RJ (2008) The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 377:1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JA, Bautista-Jimenez R, Denlinger DL (2016) Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem Mol Biol 76:29–37

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL, Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745–1745

    Article  CAS  PubMed  Google Scholar 

  • Rubertis FD, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384:589–591

    Article  PubMed  Google Scholar 

  • Sako K, Kim JM, Matsui A, Nakamura K, Tanaka M, Kobayashi M, Saito K, Nishino N, Kusano M, Taji T, Yoshida M, Seki M (2016) Ky-2, a histone deacetylase inhibitor, enhances high-salinity stress tolerance in Arabidopsis thaliana. Plant Cell Physiol 57:776–783

    Article  CAS  PubMed  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabunoki H, Gorman MJ, Dittmer NT, Kanost MR (2016) Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum. Sci Rep 6:29583. https://doi.org/10.1038/srep29583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9:2–6

    Article  CAS  PubMed  Google Scholar 

  • Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Vidal M, Gaber RF (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 11:6317–6327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods JK, Ziafazeli T, Rogina B (2016) Rpd3 interacts with insulin signaling in Drosophila longevity extension. Aging 8:3028–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu CC, Bornemann DJ, Zhitomirsky D, Miller EL, O’Connor MB, Simon JA (2008) Drosophila histone deacetylase-3 controls imaginal disc size through suppression of apoptosis. PLoS Genet 4:e1000009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M, Nauen R, Harrison DA, Palli SR (2010) A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc Natl Acad Sci USA 107:8557–8562

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 31572000 and 31871974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Wang.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, N., Jiang, H. et al. Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum. Genetica 147, 281–290 (2019). https://doi.org/10.1007/s10709-019-00065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-019-00065-3

Keywords

Navigation