, Volume 146, Issue 2, pp 199–210 | Cite as

Species delimitation and conservation genetics of the Canarian endemic Bethencourtia (Asteraceae)

  • Priscila Rodríguez-Rodríguez
  • Pedro Luis Pérez de Paz
  • Pedro A. Sosa
Original Paper


Bethencourtia Choisy ex Link is an endemic genus of the Canary Islands and comprises three species. Bethencourtia hermosae and Bethencourtia rupicola are restricted to La Gomera, while Bethencourtia palmensis is present in Tenerife and La Palma. Despite the morphological differences previously found between the species, there are still taxonomic incongruities in the group, with evident consequences for its monitoring and conservation. The objectives of this study were to define the species differentiation, perform population genetic analysis and propose conservation strategies for Bethencourtia. To achieve these objectives, we characterized 10 polymorphic SSR markers. Eleven natural populations (276 individuals) were analyzed (three for B. hermosae, five for B. rupicola and three for B. palmensis). The results obtained by AMOVA, PCoA and Bayesian analysis on STRUCTURE confirmed the evidence of well-structured groups corresponding to the three species. At the intra-specific level, B. hermosae and B. rupicola did not show a clear population structure, while B. palmensis was aggregated according to island of origin. This is consistent with self-incompatibility in the group and high gene flow within species. Overall, the genetic diversity of the three species was low, with expected heterozygosity values of 0.302 (B. hermosae), 0.382 (B. rupicola) and 0.454 (B. palmensis). Recent bottleneck events and a low number of individuals per population are probably the causes of the low genetic diversity. We consider that they are naturally rare species associated with specific habitats. The results given in this article will provide useful information to assist in conservation genetics programs for this endemic genus.


Canary Islands Conservation genetics Endemism Genetic diversity Microsatellites 



This research was funded by “Organismo Autónomo de Parques Nacionales” (Project 255/2011). We thank ‘‘Agencia Canaria de Investigación, Innovación y Sociedad de la Información’’ for the fellowship granted to Priscila Rodríguez. We are also grateful to Ángel Fernández, Sito Chinea and Ángel García from Garajonay National Park and the colleagues Pedro Romero, Agustín Naranjo Cigala, Claudio Moreno Medina, Juan José Robledo Arnuncio, Miguel Ángel González and Leticia Curbelo for the help in the samples collection and the laboratory work. Montserrat Fernández and Isabel Saro have added useful comments to the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10709_2018_13_MOESM1_ESM.pdf (20 kb)
Supplementary material 1 (PDF 20 KB)
10709_2018_13_MOESM2_ESM.pdf (17 kb)
Supplementary material 2 (PDF 16 KB)
10709_2018_13_MOESM3_ESM.pdf (202 kb)
Supplementary material 3 (PDF 201 KB)
10709_2018_13_MOESM4_ESM.pdf (43 kb)
Supplementary material 4 (PDF 20 KB)


  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. CrossRefPubMedGoogle Scholar
  2. Arechavaleta M, Rodríguez S, Zurita N, García A (2010) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Gobierno de CanariasGoogle Scholar
  3. Barrett S, Kohn J (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30Google Scholar
  4. BOC (2010) Ley 4/2010 de 4 de junio, del Catálogo canario de especies protegidas. Boletín Oficial de Canarias 112:15200–15225Google Scholar
  5. Brennan AC, Barker D, Hiscock SJ, Abbott RJ (2012) Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae). Heredity 108:87–95. CrossRefPubMedGoogle Scholar
  6. Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W, Vincent Florens FB, Moura M, Jardim R, Gómes I, Kueffer C (2010) Conservation of oceanic island floras: Present and future global challenges. Perspect Plant Ecol Evol Syst 12:107–129. CrossRefGoogle Scholar
  7. Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237. CrossRefGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  9. Crawford DJ, Stuessy TF (2016) Cryptic variation, molecular data, and the challenge of conserving plant diversity in oceanic archipelagos: the critical role of plant systematics. Taxon 46:129–148. Google Scholar
  10. Crawford DJ, Lowrey TK, Anderson GJ, Bernardello G, Santos-guerra A, Stuessy TF (2009) Genetic diversity in Asteraceae endemic to oceanic islands: Baker’ s Law and polyploidy. In: Funk V, Susanna A, Stuessy TF, Bayer R (eds) Systematic, evolution and biogeography of Compositae. International Association for Plant Taxonomy edn, Vienna, Austria, pp 101–114Google Scholar
  11. David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487. CrossRefPubMedGoogle Scholar
  12. Dellaporta S, Wood L, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 14:19–21CrossRefGoogle Scholar
  13. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712. CrossRefPubMedGoogle Scholar
  14. Dias EF, Sardos J, Silva L, Maciel MGB, Moura M (2014) Microsatellite markers unravel the population genetic structure of the Azorean Leontodon: Implications in conservation. Plant Syst Evol 300:987–1001. CrossRefGoogle Scholar
  15. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. CrossRefGoogle Scholar
  16. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242. CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611–2620. CrossRefPubMedGoogle Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  19. Fernández-López ÁB, Gómez-González LAG, Gómez M (2014) Garajonay después del gran incendio de 2012. In: Santamarta Cerezal JC (ed) Investigación, gestión y técnica forestal, en la región de la Macaronesia. Colegio de Ingenieros de Montes, Madrid, pp 201–226Google Scholar
  20. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919CrossRefPubMedGoogle Scholar
  22. Frankham R (1997) Do island populations have less genetic variation than mainland populations?. Heredity 78(Pt 3):311–327Google Scholar
  23. Frankham R (1998) Inbreeding and extinction: Island populations. Conserv Biol 12:665–675CrossRefGoogle Scholar
  24. Frankham R, Briscoe D, Ballou J, Briscoe D (2002) Introduction to Conservation Genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. García-Verdugo C, Baldwin BG, Fay MF, Caujapé-Castells J (2014) Life history traits and patterns of diversification in oceanic archipelagos: A meta-analysis. Bot J Linn Soc 174:334–348CrossRefGoogle Scholar
  26. Gobierno de Canarias (2009) Evaluación de especies catalogadas de Canarias. Senecio hermosae. Available at: Accessed October 2016
  27. González-Pérez M, Caujapé-Castells J (2014) Development and characterization of nuclear microsatellite markers for Parolinia ornata Webb (Brassicaceae), and cross-species amplification in all species described in the Canarian endemic genus Parolinia. Conserv Genet Resour 6:705–706CrossRefGoogle Scholar
  28. González-Pérez M, Lledó MD, Lexer C, Fay M, Marrero M, Bañares-Baudet Á, Carqué E, Sosa PA (2009a) Genetic diversity and differentiation in natural and reintroduced populations of Bencomia exstipulata and comparisons with B. caudata (Rosaceae) in the Canary Islands: an analysis using microsatellites. Bot J Linn Soc 160:429–441. CrossRefGoogle Scholar
  29. González-Pérez M, Sosa PA, Rivero E, González-González EA, Naranjo A (2009b) Molecular markers reveal no genetic differentiation between Myrica rivas-martinezii. and M. faya (Myricaceae). Ann Bot 103:79–86. CrossRefPubMedGoogle Scholar
  30. Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  31. IUCN (2012) IUCN red list categories and criteria: Version 3.1. IUCN, GlandGoogle Scholar
  32. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. CrossRefPubMedGoogle Scholar
  33. Jarne P, Charlesworth D (1993) Selfing rate in functionally hermaphrodite plants. Annu Rev Ecol Evol Syst 24:441–466CrossRefGoogle Scholar
  34. Jeffrey C (1992) The tribe Senecioneae (Compositae) in the Mascarene Islands with an Annotated World Check-List of the genera of the tribe: notes on Compositae : VI. Kew Bull 47:49–109CrossRefGoogle Scholar
  35. Kalinowski ST (2005) HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. CrossRefGoogle Scholar
  36. Kreft H, Jetz W, Mutke J, Kier G, Barthlott W (2008) Global diversity of island floras from a macroecological perspective. Ecol Lett 11:116–127. PubMedGoogle Scholar
  37. Kunkel G (1975) Novedades y Taxones Críticos en la Flora de La Gomera. Cuad Bot Canar 25:17–49Google Scholar
  38. Langella O (2002) POPULATIONS 1.2. 28. Population genetic software (individuals or populations distances, phylogenetic trees). CNRS, France. Accessed 28 Mar 2016
  39. Mairal M, Sanmartín I, Aldasoro JJ, Culshaw V, Manolopoulou I, Alarcón M (2015) Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: The case of the widespread endemic Canarina canariensis (Campanulaceae). Mol Ecol 24:3944–3963. CrossRefPubMedGoogle Scholar
  40. Martín Osorio VE, Wildpret de la Torre W, Alcántara Vernet E (2011) Canariothamnus hermosae. The IUCN Red List of Threatened Species 2011: e.T195482A8972929. Accessed 23 Feb 2017
  41. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Missouri Bot Gard 84:112. CrossRefGoogle Scholar
  42. Meloni M, Reid A, Caujapé-Castells J, Soto M, Fernández-Palacios JM, Conti E (2015) High genetic diversity and population structure in the endangered Canarian endemic Ruta oreojasme (Rutaceae). Genetica 143:571–580. CrossRefPubMedGoogle Scholar
  43. Moreno-Saiz JC (2010) Lista Roja de la Flora Vascular Española. Madrid: Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino)-Sociedad Española de Biología de la Conservación de PlantasGoogle Scholar
  44. Moreno-Saiz JC, Domínguez-Lozano F, Marrero-Gómez M, Bañares-Baudet Á (2015) Application of the Red List Index for conservation assessment of Spanish vascular plants. Conserv Biol 29:910–919. CrossRefGoogle Scholar
  45. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170. CrossRefPubMedGoogle Scholar
  46. Nordenstam B (2006a) Canariothamnus B. Nord., a new genus of the Compositae-Senecioneae, endemic to the Canary Islands. Compos Newslett 44:24–31Google Scholar
  47. Nordenstam B (2006b) Bethencourtia. In: Greuter W, Raab-straube E (eds) Wildenowia vol 2. Notulae adfloram Euro-Mediterranean Pertinentes, pp 707–717Google Scholar
  48. Nordenstam B, Pelser PB, Kadereit JW, Watson LE (2009) Senecioneae. In: Funk V, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution, and biogeography of the Compositae. International Association for Plant Taxonomy edn. Vienna,, Austria, pp 503–525Google Scholar
  49. Ortega C, González C (1986) Contribución a la conservación “ex sito” de especies canarias en peligro: Propagación “in vitro” de Senecio hermosae Pitard. Bot macaronesica 14:59–72Google Scholar
  50. Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pelser PB, Nordenstam B, Kadereit JW (2007) An ITS Phylogeny of tribe Senecioneae (Asteraceae) and a New Delimitation of Senecio L. Taxon 56:1077–1104CrossRefGoogle Scholar
  52. Pérez de Paz JP, Caujapé-Castells J (2013) A review of the allozyme data set for the Canarian endemic flora: causes of the high genetic diversity levels and implications for conservation. Ann Bot 111:1059–1073. CrossRefPubMedGoogle Scholar
  53. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered 90:502–503CrossRefGoogle Scholar
  54. Pritchard JK, Stephens MM, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. PubMedPubMedCentralGoogle Scholar
  55. Rambaut A (2009) FigTree v1. 3.1: Tree figure drawing tool. In: Accessed October 2016
  56. Reyes-Betancort JA, Santos Guerra A, Guma IR, Humphries CJ, Carine MA (2008) Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora. An del Jardín Botánico Madrid 65:25–45. Google Scholar
  57. Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefPubMedGoogle Scholar
  58. Rousset F (2008) GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  59. Silva LB, Sardos J, de Sequeira MM, Silva L, Crawford D, Moura M (2016) Understanding intra and inter-archipelago population genetic patterns within a recently evolved insular endemic lineage. Plant Syst Evol 302:367–384. CrossRefGoogle Scholar
  60. Sosa PA, González-Pérez M, Moreno C, Clarke JB (2010) Conservation genetics of the endangered endemic Sambucus palmensis Link (Sambucaceae) from the Canary Islands. Conserv Genet 11:2357–2368. CrossRefGoogle Scholar
  61. Sosa PA, González-Pérez M, González-González EA, Rivero E (2011) Genetic diversity of Canarian endemisms revealed by microsatellites: knowledge after one decade of analysis. In: Caujapé-Castells J, Nieto Feliner G, Fernández-Palacios JM (eds) Proceedings of the Amurga International Conferences on Island Biodiversity. Maspalomas, pp 94–100Google Scholar
  62. Sosa PA, González-González EA, González-Pérez M, Pérez de Paz PL (2013) Contrasting patterns of genetic differentiation in Macaronesian lineages of Ilex (Aquifoliaceae). Bot J Linn Soc 173:258–268. CrossRefGoogle Scholar
  63. Soto ME, Marrero Á, Roca-Salinas A, Bramwell D, Caujapé-Castells J (2016) Conservation implications of high genetic variation in two closely related and highly threatened species of Crambe (Brassicaceae) endemic to the island of Gran Canaria: C. tamadabensis and C. pritzelii. Bot J Linn Soc 182:152–168. CrossRefGoogle Scholar
  64. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. CrossRefGoogle Scholar
  65. Vitales D, García-Fernández A, Pellicer J, Vallès J, Santos-Guerra A, Cowan RS, Fay MF, Hidalgo O, Garnatje T (2014) Key processes for Cheirolophus (Asteraceae) diversification on Oceanic Islands inferred from AFLP data. PLoS One 9:1–14. CrossRefGoogle Scholar
  66. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358–1370PubMedGoogle Scholar
  67. Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography. ecology, evolution and conservation, Second Edi. Oxford University Press, Oxford and La LagunaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT)Universidad de Las Palmas de Gran Canaria, Campus Universitario de TafiraCanary IslandsSpain
  2. 2.Departamento de Botánica, Ecología y Fisiología VegetalUniversidad de La LagunaLa LagunaSpain

Personalised recommendations