Skip to main content
Log in

Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Annu Rev Genet 10:53–134

    Article  CAS  PubMed  Google Scholar 

  • Boulton A, Myers RS, Redfield RJ (1997) The hotspot conversion paradox and the evolution of meiotic recombination. Proc Natl Acad Sci USA 94:8058–8063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Cervantes MD, Farah JA, Smith GR (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 5:883–888

    Article  CAS  PubMed  Google Scholar 

  • Croce CM (1986) Chromosome translocations and human cancer. Cancer Res 46:6019–6023

    CAS  PubMed  Google Scholar 

  • Cromie GA, Hyppa RW, Cam HP, Farah JA, Grewal SIS, Smith GR (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet 3:1496–1507

    Article  CAS  Google Scholar 

  • de Castro E, Soriano I, Marin L, Serrano R, Quintales L, Antequera F (2012) Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. EMBO J 31:124–137

    Article  PubMed  Google Scholar 

  • Egel R (1977) Selective spore survival during replica-plating of fission yeast. Arch Microbiol 112:109–110

    Article  CAS  PubMed  Google Scholar 

  • Esposito MS, Wagstaff JE (1981) Mechanisms of mitotic recombination. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 341–370

    Google Scholar 

  • Fan Q, Xu F, Petes TD (1995) Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol Cell Biol 15:1679–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler KR, Sasaki M, Milman N, Keeyey S, Smith GR (2014) Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res 24:1650–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox ME, Yamada T, Ohta K, Smith GR (2000) A family of CRE-related DNA sequences with meiotic recombination hotspot activity in Schizosaccharomyces pombe. Genetics 156:59–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm C, Bähler J, Kohli J (1994) M26 recombinational hotspot and physical conversion tract analysis in the ade6 gene of Schizosaccharomyces pombe. Genetics 135:41–51

    Google Scholar 

  • Gutz H (1971) Site specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69:317–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Gysler-Junker A, Bodi Z, Kohli J (1991) Isolation and characterization of Schizosaccharomyces pombe mutants affected in mitotic recombination. Genetics 128:495–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Topic Dev Biol 52:1–53

    Article  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    Article  CAS  PubMed  Google Scholar 

  • Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 94:13756–13770

    Article  Google Scholar 

  • Lorber BJ et al (1992) Characterization and molecular analysis of nondisjunction in 18 cases of trisomy 21 and leukemia. Genes Chromosom Cancer 4:222–227

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK et al (2001) Recombinational DNA double strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J et al (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:719–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–370

    Article  CAS  PubMed  Google Scholar 

  • Phadnis N, Hyppa RW, Smith GR (2011) New and old ways to control meiotic recombination. Trends Genet 27:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansam CL, Pezza RJ (2015) Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination. FEBS J 282:2431–2444

    Article  CAS  Google Scholar 

  • Schuchert P, Langsford M, Käslin E, Kohli J (1991) A specific DNA sequence is required for high frequency of recombination in the ade6 gene of fission yeast. EMBO J 10:2157–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif WD, Glick GG, Davidson MK, Wahls WP (2002) Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II. Cell Chromosome 1:1. https://cellandchromosome.biomedcentral.com/track/pdf/10.1186/1475-9268-1-1?

  • Steiner WW, Smith GR (2005a) Natural meiotic recombination hotspots in the S. pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 25:9054–9062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner WW, Smith GR (2005b) Optimizing the nucleotide sequence of a meiotic recombination hotspot in Schizosaccharomyces pombe. Genetics 169:1973–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner WW, Steiner EM (2012) Fission yeast hotspot sequence motifs are also active in budding yeast. PLoS One 7:e53090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner WW, Schreckhise RW, Smith GR (2002) Meiotic DNA breaks at the S. pombe recombination hotspot M26. Mol Cell 9:847–855

    Article  CAS  PubMed  Google Scholar 

  • Steiner WW, Steiner EM, Girvin AR, Plewik LE (2009) Novel nucleotide sequence motifs that produce hotspots of meiotic recombinatoin in Schizosaccharomyces pombe. Genetics 182:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner WW, Davidow PA, Bagshaw ATM (2011) Important characteristics of sequence-specific recombination hotspots in Schizosaccharomyces pombe. Genetics 187:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Article  CAS  PubMed  Google Scholar 

  • Szankasi P, Heyer WD, Schuchert P, Kohli J (1988) DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe: wild-type and mutant alleles including the recombination hotspot allele ade6-M26. J Mol Biol 204:917–925

    Article  CAS  PubMed  Google Scholar 

  • Vallejo AN, Pogulis RJ, Pease LR (1995) Mutagenesis by PCR. In: Dieffenbach CW, Dveksler GS (eds) PCR primer: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 603–612

    Google Scholar 

  • Wahls WP, Davidson MK (2011) DNA sequence-mediated, evolutionarily rapid redistribution of meiotic recombination hotspots: commentary on genetics 182: 459–469 and genetics 187: 385–396. Genetics 189:685–694

  • Wahls WP, Smith GR (1994) A heteromeric protein that binds to a meiotic homologous recombination hotspot: correlation of binding and hotspot activity. Genes Dev 8:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Wood V et al (2002) The genome sequence of the eukaryote fission yeast Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Schreckhise RW, Steiner WW, Smith GR (2002) Meiotic recombination remote from prominent DNA break sites in S. pombe. Mol Cell 9:253–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Niagara University Research Council and the Academic Center for Integrated Sciences (ACIS) and a Barbara S. Zimmer award to S.J.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Steiner.

Ethics declarations

Conflict of interest

Steven J. Foulis declares that he has no conflict of interest. Kyle R. Fowler declares that he has no conflict of interest. Walter W. Steiner declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foulis, S.J., Fowler, K.R. & Steiner, W.W. Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe . Genetica 146, 65–74 (2018). https://doi.org/10.1007/s10709-017-9997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9997-3

Keywords

Navigation