Skip to main content
Log in

Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam MT, Petit RA III, Read TD, Dove ADM (2014) The complete mitochondrial genome sequence of the world’s largest fish, the whale shark (Rhincodon typus), and its comparison with those of related shark species. Gene 539:44–49

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (1994) Animal Mitochondrial DNA. In: Avise JC (ed) Molecular markers, natural history and evolution. Chapman & Hall, New York, pp 60–68

    Chapter  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  PubMed  Google Scholar 

  • Bignotto TS, Prioli AJ, Prioli SMAP, Maniglia TC, Boni TA, Lucio LC, Gomes VN, Prioli RA, Oliveira AV, Júlio-Junior HF, Prioli LM (2009) Genetic divergence between Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum (Siluriformes: Pimelodidae) in the Paraná River Basin. Braz J Biol 69:681–689

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. doi:10.1093/bioinformatics/btu170

    PubMed  PubMed Central  Google Scholar 

  • Borba RS de, Silva EL da, Ponzetto JM, Pozzobon APB, Centofante L, Alves AL, Parise-Maltempi PP (2013a) Genetic structure of the ornamental tetra fish speciesPiabucus melanostomusHolmberg, 1891 (CHARACIDAE, IGUANODECTINAE) in the Brazilian Pantanal wetlands inferred by mitochondrial DNA sequences. Biota Neotrop 13:42–46

  • Borba RS de, Zawadzki CH, Oliveira C, Perdices A, Parise-Maltempi PP, Alves AL (2013b) Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae) inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin. Neotrop Ichthyol 11:111–116

  • Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buitrago-Suárez UA, Burr BM (2007) Taxonomy of the catfish genusPseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512:1–38

    Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho DC, Neto DAP, Brasil BSAF, Oliveira DAA (2011) DNA barcoding unveils a high rate of mislabeling in a commercial freshwater catfish from Brazil. Mitochondr DNA 22:97–105

    Article  CAS  Google Scholar 

  • Carvalho DC, Oliveira DAA, Beheregaray LB, Torres RA (2012) Hidden genetic diversity and distinct evolutionarily significant units in an commercially important Neotropical apex predator, the catfish Pseudoplatystoma corruscans. Conserv Genet 13:1671–1675

    Article  Google Scholar 

  • Carvalho-Costa LF, Piorski NM, Willis SC, Galetti PM Jr, Ortí G (2011) Molecular systematics of the neotropical shovelnose catfish genus Pseudoplatystoma Bleeker 1862 based on nuclear and mtDNA markers. Mol Phylogenet Evol 59:177–194

    Article  CAS  PubMed  Google Scholar 

  • Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diogo R (2007) Homoplasies, consistency index and the complexity of morphological evolution: catfishes as a case study for general discussions on phylogeny and macroevolution. Int. J Morphol 25:831–837

    Google Scholar 

  • Prado FD do, Hashimoto DT, Mendonça FF, Senhorini JA, Foresti F, Porto-Foresti F (2011) Molecular identification of hybrids between Neotropical catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum. Aquac Res 42:1890–1894

  • do Prado FD, Hashimoto DT, Senhorini JA, Foresti F, Porto-Foresti F (2012) Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: Pimelodidae): The impact of hatcheries in Brazil. Fish Res 125–126:300–305

    Article  Google Scholar 

  • Drummond AJ, Suchard MA (2010) Bayesian random local clocks, or one rate to rule them all. BMC Biol 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Ferraris CJ Jr (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1418:1–628

    Article  Google Scholar 

  • Fischer C, Koblmüller S, Gülly C, Schlötterer C, Sturmbauer C, Thallinger GG (2013) Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae) and the blunthead cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. Plos One. doi:10.1371/journal.pone.0067048

    Google Scholar 

  • Fonseca MM, Posada D, Harris DJ (2008) Inverted replication of vertebrate mitochondria. Mol Biol Evol 25:805–808

    Article  CAS  PubMed  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. http://arxiv.org/pdf/1207.3907v2.pdf. Accessed 16 May 2016

  • Guo Y, Wang Z, Liu C, Liu Y (2008) Sequencing and analysis of the complete mitochondrial DNA of Russell’s snapper (L. russellii). Prog Nat Sci 18:1233–1238

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. doi:10.1093/nar/gkt371

    Google Scholar 

  • Hashimoto DT, Prado FD do, Senhorini JA, Foresti F, Porto-Foresti F (2013) Detection of post-F1 fish hybrids in broodstock using molecular markers: approaches for genetic management in aquaculture. Aquac Res 44:876–884

    Article  CAS  Google Scholar 

  • He A, Luo Y, Yang H, Liu L, Li S, Wang C (2011) Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and Blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications. Mol Biol Rep 38:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • Heidtmann LM (2014) Caracterização do genoma mitocondrial de onça-pintada (Panthera onca) e elucidação da filogenia mitogenômica do gênero pantera. Dissertação, Pontifícia Universidade Católica do Rio Grande do Sul

  • Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299

    Article  CAS  PubMed  Google Scholar 

  • Hrbek T, Farias IP (2008) The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes). Genet Mol Biol 31:293–302

    CAS  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemt E, Persson O, Shi Y, Mehmedovic M, Uhler JP, López MD, Freyer C, Gustafsson CM, Samuelsson T, Falkenberg M (2015) Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res. doi:10.1093/nar/gkv804

    PubMed  PubMed Central  Google Scholar 

  • Jiang M, Yang C, Wen H (2014) The complete mitochondrial genome of Aspiorhynchus laticepsand its phylogenetic analysis. Meta. Gene 2:218–225

    Google Scholar 

  • Jondeung A, Sangthong P, Zardoya R (2007) The complete mitochondrial DNA sequence of the Mekong giant catfish (Pangasianodon gigas), and the phylogenetic relationships among Siluriformes. Gene 387:49–57

    Article  CAS  PubMed  Google Scholar 

  • Kartavtsev YP, Jung SO, Lee YM, Byeon HK, Lee JS (2007) Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae): Genome description and phylogenetic considerations inferred from the Cyt b and 16 S rRNA genes. Gene 396:13–27

    Article  CAS  PubMed  Google Scholar 

  • Kim C II, Lee JS (2004) The complete mitochondrial genome of the rockfish Sebastes schlegeli (Scorpaeniformes, Scorpaenidae). Mol Cells 17:322–328

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Eddy SR (1997) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg JG, Sullivan JP, Hardman M (2011) Phylogenetics of the South American catfish family Pimelodidae (Teleostei: Siluriformes) using nuclear and mitochondrial gene sequences. P Acad Nat Sci Phila 161:153–189

    Article  Google Scholar 

  • Ma L, Cui P, Zhu J, Zhang Z, Zhang Z (2014) Translational selection in human: more pronounced in housekeeping genes. Biol Direct 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer A (1993) Evolution of mitochondrial DNA in fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, Elsevier, pp 1–38

  • Min XJ, Hickey DA (2007) DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins. DNA Res 14:201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu X, Liu Y, Wang X, Liu C, Song H, Hu Y, Luo J (2014) Characterization of the mitochondrial genome and phylogeny of the black arowana (Osteoglossum ferreirai). Biologia 69:1222–1230

    Article  Google Scholar 

  • Mu X, Liu Y, Lai M, Song H, Wang X, Hu Y, Luo J (2015) Characterization of the Macropodus opercularis complete mitochondrial genome and family Channidae taxonomy using Illumina-based de novo transcriptome sequencing. Gene 559:189–195

    Article  CAS  PubMed  Google Scholar 

  • Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Mazumder TH, Chakraborty S (2014) In silico comparison of nucleotide composition and codon usage bias between the essential and non-essential genes of Staphylococcus aureus NCTC 8325. Int J Curr Microbiol App Sci 3:8–15

    Google Scholar 

  • Pereira LHG, Hanner R, Foresti F, Oliveira C (2013) Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genet 14:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358

    Article  CAS  PubMed  Google Scholar 

  • Porto-Foresti F, Hashimoto DT, Alves AL, Almeida RBC, Senhorini JÁ, Bortolozzi J, Foresti F (2008) Cytogenetic markers as diagnoses in the identification of the hybrid between Piauçu (Leporinus microcephalus) and Piapara (Leporinus elongatus). Genet Mol Biol 31:195–202

    Article  CAS  Google Scholar 

  • Powell AFLA, Barker FK, Lanyon SM (2013) Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: An avian case study. Mol Phylogenet Evol 66:69–79

    Article  PubMed  Google Scholar 

  • Prado FD, Pardo BG, Guerra-Varela J, Senhorini JA, Martínez P, Foresti F, Porto-Foresti F (2014) Development and characterization of 16 microsatellites for the Neotropical catfish Pseudoplatystoma reticulatum and cross species analysis. Conservation Genet Resour 6:679–681

    Article  Google Scholar 

  • Prosdocimi F, Carvalho DC de, Almeida RN de, Beheregaray LB (2011) The complete mitochondrial genome of two recently derived species of the fish genus Nannoperca (Perciformes, Percichthyidae). Mol Biol Rep. doi:10.1007/s11033-011-1034-5

    PubMed  Google Scholar 

  • Rangel-Medrano JD, Alzate JF, Márquez EJ (2015) Complete mitochondrial genome of the Neotropical catfishPseudoplatystoma magdaleniatum (Siluriformes, Pimelodidae). Mitochondr DNA. doi:10.3109/19401736.2014.1003830

    Google Scholar 

  • Restrepo-Escobar N, Alzate JF, Márquez EJ (2014) Mitochondrial genome of the Trans-Andean shovelnose catfishSorubim cuspicaudus(Siluriformes, Pimelodidae). Mitochondr DNA. doi:10.3109/19401736.2014.989506

    Google Scholar 

  • Saccone C, Pesole G, Sbisà E (1991) The main regulatory region of mammalian mitochondrial DNA: structure–function model and evolutionary pattern. J Mol Evol 33:83–91

    Article  CAS  PubMed  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140

    Article  PubMed  Google Scholar 

  • Sosa MX, Sivakumar IKA, Maragh S, Veeramachaneni V, Hariharan R, Parulekar M, Fredrikson KM, Harkins TT, Lin J, Feldman AB, Tata P, Ehret GB, Chakravarti A (2012) Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. Plos Comput Biol. doi:10.1371/journal.pcbi.1002737

    PubMed  PubMed Central  Google Scholar 

  • Sullivan JP, Lundberg JG, Hardman M (2006) A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag 1 e rag 2 nuclear gene sequences. Mol Phylogenet Evol 41:636–662

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P (1996) The use of mitochondrial DNA control region sequencing in conservation genetics. In: Smith TB, Wayne RK (eds) Molecular genetic approaches in conservation. Oxford University Press, New York, pp 125–142

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrico JP, Hubert N, Desmarais E, Duponchelle F, Nuñez Rodriguez J, Montoya-Burgos J, Garcia Davila C, Carvajal-Vallejos FM, Grajales AA, Bonhomme F, Renno J-F (2009) Molecular phylogeny of the genus Pseudoplatystoma (Bleeker, 1862): biogeographic and evolutionary implications. Mol Phylogenet Evol 51:588–594

    Article  CAS  PubMed  Google Scholar 

  • Villela LCV, Alves AL, Varela ES, da Silva NMA, Caetano AR (2017a) Development of a minisequencing assay to identify cachara (Pseudoplatystoma reticulatum) and pintado (Pseudoplatystoma corruscans) F1 hybrids (In preparation)

  • Villela LCV, Alves AL, Varela ES, Yamagishi MEB, Giachetto PF, da Silva NMA, Paiva SR, Caetano AR (2017b) Sequencing and characterization of the cachara (Pseudoplatystoma reticulatum) transcriptome (In preparation)

  • Walberg MW, Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-Loop regions of mitochondrial DNA. Nucleic Acids Res 9:5411–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Shi W, Miao XG, Kong XY (2014). Complete mitochondrial genome sequences of three rhombosoleid fishes and comparative analyses with other flatfishes (Pleuronectiformes). Zool Stud 53:80

    Article  Google Scholar 

  • Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501

    Article  CAS  PubMed  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Yáñez JM, Newman S, Houston RD (2015) Genomics in Aquaculture to better understand species biology and accelerate genetic progress. Front Genet. doi:10.3389/fgene.2015.00128

  • Yu L, Li Y-W, Ryder OA, Zhang Y-P (2007) Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol Biol. doi:10.1186/1471-2148-7-198

    Google Scholar 

  • Zhang Z, Li J, Cui P, Ding F, Li A, Townsend JP, Yu J (2012) Codon deviation coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinf 13:43

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Brazilian National Council for Scientific and Technological Development (CNPQ), Grant No. 479665/2011-7, and from The Brazilian Agricultural Research Corporation (EMBRAPA), Grant No. 01.11.07.002.00.00. J.M.P. received a graduate scholarship from FAPESP (Grant No. 2012/03553-8). We would like to thank EMBRAPA Multiuser Bioinformatics Lab (Laboratório Multiusuário de Bioinformática da Embrapa) for providing additional computational infrastructure; Daniel Chaves Webber for elaborating the map of cachara collection points (Fig. S1, Supplementary material); and Jefferson Cristiano Christofoletti for formatting the images in Figs. 4 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Rodrigues Caetano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villela, L.C.V., Alves, A.L., Varela, E.S. et al. Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree. Genetica 145, 51–66 (2017). https://doi.org/10.1007/s10709-016-9945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9945-7

Keywords

Navigation