Skip to main content
Log in

Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and Blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cichlid fishes have played an important role in evolutionary biology and aquaculture industry. Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and Mozambique tilapia (Oreochromis mossambicus), the useful models in studying evolutionary biology within Cichlid fishes, are also mainly cultured species in aquaculture with great economic importance. In this paper, the complete nucleotide sequence of the mitochondrial genome for O. niloticus and O. aureus were determined and phylogenetic analyses from mitochondrial protein-coding genes were conducted to explore their phylogenetic relationship within Cichlids. The mitogenome is 16,625 bp for O. niloticus and 16,628 bp for O. aureus, containing the same gene order and an identical number of genes or regions with the other Cichlid fishes, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one putative control region. Phylogenetic analyses using three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian method) show O. niloticus and O. mossambicus are closely related, and O. aureus has remotely phylogenetic relationship from above two fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York, pp 390

    Google Scholar 

  2. Klett V, Meyer A (2002) What, if anything, is a Tilapia?-mitochondrial ND2 phylogeny of tilapiines and the evolution of parental care systems in the African cichlid fishes. Mol Biol Evol 19:865–883

    CAS  PubMed  Google Scholar 

  3. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  4. Kuraku S, Meyer A (2008) Genomic analysis of cichlid fish ‘natural mutants’. Curr Opin Genet Dev 18:551–558

    Article  CAS  PubMed  Google Scholar 

  5. Salzburger W, Meyer A (2004) The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290

    Article  CAS  PubMed  Google Scholar 

  6. Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc Biol Sci 273:1987–1998

    Article  PubMed  Google Scholar 

  7. Turner GF (2007) Adaptive radiation of cichlid fish. Curr Biol 17:R827–R831

    Article  CAS  PubMed  Google Scholar 

  8. Trewavas E (1981) Addendum to Tilapia and Sarotherodon? Buntbarsche Bull 87:12

    Google Scholar 

  9. Trewavas E (1982) Genetic groupings of Tilapiini used in aquaculture. Aquaculture 27:79–81

    Article  Google Scholar 

  10. Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis, and Danakilia. British Museum (Natural History), London, p 583

    Google Scholar 

  11. Romana-Eguia MRR, Ikeda M, Basiao ZU, Taniguchi N (2004) Genetic diversity in farmed Asian Nile and red hybrid tilapia stocks evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture 236:131–150

    Article  CAS  Google Scholar 

  12. Khaw HL, Ponzoni RW, Danting MJC (2008) Estimation of genetic change in the GIFT strain of Nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003. Aquaculture 275:64–69

    Article  Google Scholar 

  13. Liao G (2000) The distribution of Tilapias. Fishery Abroad 38:38–41

    Google Scholar 

  14. Chakrabarty P (2006) Systematics and historical biogeography of Greater Antillean Cichlidae. Mol Phylogenet Evol 39:619–627

    Article  PubMed  Google Scholar 

  15. Dinesh KR, Lim TM, Chan WK, Phang VPE (1996) Genetic variation inferred from RAPD fingerprinting in three species of tilapia. Aquacult Int 4:19–30

    Article  Google Scholar 

  16. Franck JP, Kornfield I, Wright JM (1994) The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes. Mol Phylogenet Evol 3:10–16

    Article  CAS  PubMed  Google Scholar 

  17. Lee SJ, Ju CC, Chu SL, Chien MS, Chan TH, Liao WL (2007) Molecular cloning, expression and phylogenetic analyses of parvalbumin in tilapia, Oreochromis mossambicus. J Exp Zool A Ecol Genet Physiol 307:51–61

    Article  PubMed  Google Scholar 

  18. Mabuchi K, Miya M, Azuma Y, Nishida M (2007) Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evol Biol 7:10

    Article  PubMed  Google Scholar 

  19. Musilova Z, Rican O, Janko K, Novak J (2008) Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Mol Phylogenet Evol 46:659–672

    Article  CAS  PubMed  Google Scholar 

  20. Pérez GAC, Iíban O, Ortí G, Bermingham E, Doadrio I, Zardoya R (2007) Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene. Mol Phylogenet Evol 43:91–110

    Article  PubMed  Google Scholar 

  21. Rican O, Zardoya R, Doadrio I (2008) Phylogenetic relationships of Middle American cichlids (Cichlidae, Heroini) based on combined evidence from nuclear genes, mtDNA, and morphology. Mol Phylogenet Evol 49:941–957

    Article  CAS  PubMed  Google Scholar 

  22. Nagl S, Tichy H, Mayer WE, Samonte IE, McAndrew BJ, Klein J (2001) Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 20:361–374

    Article  CAS  PubMed  Google Scholar 

  23. Kartavtsev YP, Jung S-O, Lee Y-M, Byeon H-K, Lee J-S (2007) Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae): Genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Gene 1:13–27

    Article  Google Scholar 

  24. Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J (2006) Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Res 34:2472–2481

    Article  CAS  PubMed  Google Scholar 

  25. Lin G, Lo L, Zhu ZY, Feng F, Chou R, Yue GH (2006) The complete mitochondrial genome sequence and characterization of single-nucleotide polymorphisms in the control region of the Asian seabass (Lates calcarifer). Mar Biotechnol 8:71–79

    Article  CAS  PubMed  Google Scholar 

  26. Peng Z, Wang J, He S (2006) The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes: Cranoglanididae) and the phylogeny of otophysan fishes. Gene 376:290–297

    Article  CAS  PubMed  Google Scholar 

  27. Saitoh K, Hayashizaki K, Yokoyama Y, Asahida T, Toyohara H, Yamashita Y (2000) Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationships. J Hered 91:271–278

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chen Q, Lu G, Xu J, Yang Q, Li S (2008) Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae. Gene 424:96–101

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, Wang L, Chen S, Zan R, Xiao H, Zhang YP (2010) The complete mitochondrial genomes of two species from Sinocyclocheilus (Cypriniformes: Cyprinidae) and a phylogenetic analysis within Cyprininae. Mol Biol Rep 37:2163–2171

    Article  CAS  PubMed  Google Scholar 

  30. Yue GH, Liew WC, Orban L (2006) The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics 7:242

    Article  PubMed  Google Scholar 

  31. Zhang X, Yue B, Jiang W, Song Z (2009) The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Biol Rep 36:981–991

    Article  CAS  PubMed  Google Scholar 

  32. Sambrook J, Russell DW (2002) Molecular cloning: a laboratory manual, 3rd edn. pp 461–471

  33. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    Article  CAS  PubMed  Google Scholar 

  34. Hall T (2005) BioEdit v7.0.5 http://www.mbio.ncsu.edu/BioEdit/page2.html

  35. Ojala D, Merkel C, Gelfand R, Attardi G (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403

    Article  CAS  PubMed  Google Scholar 

  36. Lowe TM, Eddy SR (1997) tRNAscan-SE 1.21 http://lowelab.ucsc.edu/tRNAscan-SE/

  37. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  38. Jobb (2008) TREEFINDER version of February 2007. Munich (Germany)

  39. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). version 4.0b10. Sinauer Associates, Sunderland, MA

  40. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  41. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  42. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jun Wang, Lu Zhou for their help with experiments assistance. This work was supported by the Tilapia Industry Special Program (hyhyzx07-044-01) and Tilapia Industry Technology System in China (mycytx-48) as well as the “Sustaining Ethical Aquaculture Trade” project funded by EU 7th Framework Program(Grant agreement no.: 222889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, A., Luo, Y., Yang, H. et al. Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and Blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications. Mol Biol Rep 38, 2015–2021 (2011). https://doi.org/10.1007/s11033-010-0324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0324-7

Keywords

Navigation