Skip to main content
Log in

Identification of critical amino acid residues and functional conservation of the Neurospora crassa and Rattus norvegicus orthologues of neuronal calcium sensor-1

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Neuronal calcium sensor-1 (NCS-1) is a member of neuronal calcium sensor family of proteins consisting of an amino terminal myristoylation domain and four conserved calcium (Ca2+) binding EF-hand domains. We performed site-directed mutational analysis of three key amino acid residues that are glycine in the conserved site for the N-terminal myristoylation, a conserved glutamic acid residue responsible for Ca2+ binding in the third EF-hand (EF3), and an unusual non-conserved amino acid arginine at position 175 in the Neurospora crassa NCS-1. The N. crassa strains possessing the ncs-1 mutant allele of these three amino acid residues showed impairment in functions ranging from growth, Ca2+ stress tolerance, and ultraviolet survival. In addition, heterologous expression of the NCS-1 from Rattus norvegicus in N. crassa confirmed its interspecies functional conservation. Moreover, functions of glutamic acid at position 120, the first Ca2+ binding residue among all the EF-hands of the R. norvegicus NCS-1 was found conserved. Thus, we identified three critical amino acid residues of N. crassa NCS-1, and demonstrated its functional conservation across species using the orthologue from R. norvegicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium–myristoyl switches. Nature 389:198–202  

    Article  CAS  PubMed  Google Scholar 

  • Batistič O, Sorek N, Schültke, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benetka W, Mehlmer N, Maurer-Stroh S, Sammer M, Koranda M, Neumüller R, Betschinger J, Knoblich JA, Teige M, Eisenhaber F (2008) Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle 7:3709–3719

    Article  CAS  PubMed  Google Scholar 

  • Bhat A, Tamuli R, Kasbekar DP (2004) Genetic transformation of Neurospora tetrasperma, demonstration of repeat-induced point mutation (RIP) in self-crosses and a screen for recessive RIP-defective mutants. Genetics 167:1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276:11949–11955

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne RD, O’Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV (2004) Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27:203–209

    Article  CAS  PubMed  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    Article  CAS  PubMed  Google Scholar 

  • Davis RH, de Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods in Enzymol 17:79–143

    Article  Google Scholar 

  • De Castro E, Nef S, Fiumelli H, Lenz SE, Kawamura S, Nef P (1995) Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun 216:133–140

    Article  CAS  PubMed  Google Scholar 

  • Deka R, Kumar R, Tamuli R (2011) Neurospora crassa homologue of neuronal calcium sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica 139:885–894

    Article  CAS  PubMed  Google Scholar 

  • Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41:897–910

    Article  CAS  PubMed  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki-Katagiri N, Ames JB (2010) Neuronal calcium sensor-1 (Ncs1p) is up-regulated by calcineurin to promote Ca2+ tolerance in fission yeast. J Biol Chem 285:4405–4414

    Article  CAS  PubMed  Google Scholar 

  • Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241

    Article  CAS  PubMed  Google Scholar 

  • Huttner IG, Strahl T, Osawa M, King DS, Ames JB, Thorner J (2003) Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278:4862–4874

    Article  CAS  PubMed  Google Scholar 

  • Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14–17

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeromin A, Muralidhar D, Parameswaran MN, Roder J, Fairwell T, Scarlata S, Dowal L, Mustafi SM, Chary KV, Sharma Y (2004) N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1. J Biol Chem 279:27158–27167

    Article  CAS  PubMed  Google Scholar 

  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci 100:313–317

    Article  CAS  PubMed  Google Scholar 

  • Larrondo LF, Colot HV, Baker CL, Loros JJ, Dunlap JC (2009) Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies. Eukaryot Cell 8:800–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCluskey K (2003) The fungal genetics stock center: from molds to molecules. Adv Appl Microbiol 52:245–262

    Article  PubMed  Google Scholar 

  • McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca2+ Sensor 1 characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J Biol Chem 274:30258–30265

    Article  CAS  PubMed  Google Scholar 

  • McIlhinney RA (1998) Membrane targeting via protein N-myristoylation. Methods Mol Biol 88:211–225

    CAS  PubMed  Google Scholar 

  • Moncrief ND, Kretsinger RH, Goodman M (1990) Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30:522–562

    Article  CAS  PubMed  Google Scholar 

  • Multani PK, Clarke TK, Narasimhan S, Ambrose-Lanci L, Kampman KM, Pettinati HM, Oslin DW, O'Brien CP, Berrettini WH, Lohoff FW (2012) Neuronal calcium sensor-1 and cocaine addiction: a genetic association study in African-Americans and European Americans. Neurosci Lett 531:46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidhar D, Jobby MK, Jeromin A, Roder J, Thomas F, Sharma Y (2004) Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Peptides 25:909–917

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J (2006) Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol 172:1081–1091. doi:10.1083/jcb.200508156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nef P (1996) Neuron-specific calcium sensors: the NCS subfamily. In: Celio MR (ed) Guidebook to the calcium-binding proteins. Sambrook and Tooze Publication, Oxford, pp 94–98

    Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: Analysis and visualization of genetic variation. EMBnet News 4:1–4

    Google Scholar 

  • Olsen HB, Kaarsholm NC (2000) Structural effects of protein lipidation as revealed by LysB29-myristoyl, des (B30) insulin. Biochemistry 39:11893–11900

    Article  CAS  PubMed  Google Scholar 

  • Pall ML, Brunelli JP (1993) A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet Newslett 40:59–62

    Google Scholar 

  • Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, Glass NL (2013) Genome wide association identifies novel loci involved in fungal communication. PLoS Genet 9:e1003669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Permyakov SE, Cherskaya AM, Senin II, Zargarov AA, Shulga-Morskoy SV, Alekseev AM, Zinchenko DV, Lipkin VM, Philippov PP et al (2000) Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Protein Eng 13:783–790

    Article  CAS  PubMed  Google Scholar 

  • Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J, Mottron L, Champagne N, Lafrenière RG, Hamdan FF et al (2008) Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum Mol Genet 17:3965–3974

    Article  CAS  PubMed  Google Scholar 

  • Podell S, Gribskov M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5:1

    Article  Google Scholar 

  • Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R et al (1993) Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:15–28

    Article  CAS  PubMed  Google Scholar 

  • Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta (BBA) Mol Cell Res 1451:1–16

    Article  CAS  Google Scholar 

  • Ryan FJ (1950) Selected methods of Neurospora genetics. Methods Med Res 3:51–75

    Google Scholar 

  • Ryan FJ, Beadle GW, Tatum EL (1943) The tube method of measuring the growth rate of Neurospora. Am J Bot 30:784–799

    Article  Google Scholar 

  • Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW (2002) Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires differentfunctions of Ca2+-binding sites. J Biol Chem 277:50365–50372

    Article  CAS  PubMed  Google Scholar 

  • Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB (2007) Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). J Biol Chem 282:30949–30959

    Article  CAS  PubMed  Google Scholar 

  • Strynadka NCJ, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–999

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Ravindran C, Kasbekar DP (2006) Translesion DNA polymerases Pol zeta, Pol eta, Pol iota, Pol kappa and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa. J Biosci 31:557–564

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Kumar R, Deka R (2011) Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi. J Basic Microbiol 51:120–128

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Deka R, Borkovich KA (2016) Calcineurin subunits A and B interact to regulate growth and asexual and sexual development in Neurospora crassa. PLoS One 11:e0151867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  • Weiss JL, Archer DA, Burgoyne RD (2000) Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffincells. J Biol Chem 275:40082–40087

    Article  CAS  PubMed  Google Scholar 

  • Westergaard M, Mitchell HK (1947) Neurospora V. A synthetic medium favoring sexual reproduction. Am J Bot 34:573–577 

    Article  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DG and RD were supported by Research Fellowships, respectively, from the Ministry of Human Resource Development (MHRD) and Council of Scientific and Industrial Research-University Grant Commission (CSIR-UGC), Government of India. We thank Prof. R. D. Burgoyne (University of Liverpool, UK) for kindly providing us the pET5α- ncs-1 Rat construct containing the R. norvegicus ncs-1 cDNA. This work was supported partially by a Grant (BT/PR3635/BCE/8/892/2012) to RT from the Department of Biotechnology, Government of India. The FGSC generously waived charges for strains and race tubes. The FGSC was supported by NSF Grant BIR-9222772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Tamuli.

Additional information

Dibakar Gohain and Rekha Deka have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohain, D., Deka, R. & Tamuli, R. Identification of critical amino acid residues and functional conservation of the Neurospora crassa and Rattus norvegicus orthologues of neuronal calcium sensor-1. Genetica 144, 665–674 (2016). https://doi.org/10.1007/s10709-016-9933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9933-y

Keywords

Navigation