Skip to main content

Advertisement

Log in

A new eigenfunction spatial analysis describing population genetic structure

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Several methods of spatial analyses have been proposed to infer the relative importance of evolutionary processes on genetic population structure. Here we show how a new eigenfunction spatial analysis can be used to model spatial patterns in genetic data. Considering a sample of n local populations, the method starts by modeling the response variable (allele frequencies or phenotypic variation) against the eigenvectors sequentially extracted from a geographic distance matrix (n × n). The relationship between the coefficient of determination (R 2) of the models and the cumulative eigenvalues, which we named the spatial signal-representation (SSR) curve, can be more efficient than Moran’s I correlograms in describing different patterns. The SSR curve was also applied to simulated data (under distinct scenarios of population differentiation) and to analyze spatial patterns in alleles from microsatellite data for 25 local populations of Dipteryx alata, a tree species endemic to the Brazilian Cerrado. The SSR curves are consistent with previous phylogeographical patterns of the species, revealing combined effects of isolation-by-distance and range expansion. Our analyses demonstrate that the SSR curve is a useful exploratory tool for describing spatial patterns of genetic variability and for selecting spatial eigenvectors for models aiming to explain spatial responses to environmental variables and landscape features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830

    Article  Google Scholar 

  • Barbujani G (1987) Autocorrelation of gene frequencies under isolation-by-distance. Genetics 177:772–782

    Google Scholar 

  • Bertin A, Ruíz VH, Figueroa R, Gouin N (2012) The role of spatial processes and environmental determinants in microgeographic shell variation of the freshwater snail Chilina dombeyana (Bruguiére, 1789). Naturwissenschaften 99:225–232

    Article  PubMed  CAS  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araújo MB, Baselga A, Beck J, Bellocq MI, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, Marco P Jr, Dobkin DS, Ferrer-Castán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MA, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficients ships in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Cercueil A, Francois O, Manel S (2007) The genetical bandwidth mapping: a spatial and graphical representation of population genetic structure based on the Wombling method. Theor Popul Biol 71:332–341

    Article  PubMed  CAS  Google Scholar 

  • Collevatti RG, Lima JS, Soares TN, Telles MPC (2010) Spatial genetic structure and life-history traits in Cerrado tree species: inferences for conservation. Nat Conserv 8:54–59

    Article  Google Scholar 

  • Collevatti RG, Telles MPC, Nabout JC, Chaves LJ, Soares TN (2013) Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas. Heredity. doi:10.1038/hdy.2013.23

  • Croucher PJP, Oxford GS, Gillespie RG (2011) Population structure and dispersal in a patchy landscape: nuclear and mitochondrial markers reveal area effects in the spider Theridion californicum (Araneae: Theridiidae). Biol J Linn Soc 104:600–620

    Article  Google Scholar 

  • Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Quantifying phylogenetically structured environmental variation. Evolution 57:2647–2652

    PubMed  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob Ecol Biogeogr 14:177–185

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2012) Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert R. Sokal (1926–2012). Biol J Linn Soc 105:721–736

    Google Scholar 

  • Diniz-Filho JAF, Sant’Ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262

    Article  Google Scholar 

  • Diniz-Filho JAF, Nabout JC, Telles MPC, Soares TN, Rangel TFLVB (2009) A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genet Mol Biol 32:203–211

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012a) Spatial autocorrelation allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF, Morales-Castilla I, Olalla-Tárraga M, Rodriguez MA, Hawkins BA (2012b) On the selection of phylogenetic eigenvectors for ecological analysis. Ecography 35:239–249

    Article  Google Scholar 

  • Diniz-Filho JAF, Rangel TF, Santos T, Bini LM (2012c) Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regression. Evolution 64:1079–1090

    Article  Google Scholar 

  • Diniz-Filho JAF, Collevatti RG, Soares TN, Telles MPC (2012d) Geographical patterns of turnover and nestedness-resultant components of allelic diversity among populations. Genetica 140:189–195

    Article  PubMed  Google Scholar 

  • Dormann CF, McPherson J, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of distributional species data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Epperson BK (1995) Spatial distribution of genotypes under isolation by distance. Genetics 140:1431–1440

    PubMed  CAS  Google Scholar 

  • Epperson BK (1996) Measurement of genetic structure within populations using Moran’s I spatial autocorrelation statistics. Proc Natl Acad Sci USA 93:10528–10532

    Article  PubMed  CAS  Google Scholar 

  • Epperson BK (2003) Geographical genetics. Princeton University press, Princeton

    Google Scholar 

  • Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65:227–337

    Article  PubMed  Google Scholar 

  • Epperson BK (2005) Estimating dispersal from short distance autocorrelation. Heredity 95:7–15

    Article  PubMed  CAS  Google Scholar 

  • Epperson BK, McRae B, Scribner K, Cushman SA, Rosenberg MS, Fortin M-J, James PMA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3549–3564

    Article  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, New York

    Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Genetics 83:145–154

    Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ, Pearcy M, Aron S (2008) Small scale spatial genetic structure in an ant species with sex-biased dispersion. Biol J Linn Soc 93:465–473

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2006) A brief guide to landscape genetics. Landscape Ecol 21:793–796

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–208

    Article  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–682

    Article  PubMed  CAS  Google Scholar 

  • Kelly RP, Oliver TA, Sivasundar A, Palumbi SR (2010) A method for detecting population genetic structure in diverse, high gene flow species. J Hered 101:423–436

    Article  PubMed  CAS  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 15:189–197

    Article  Google Scholar 

  • Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner K, Bonin A, Fortin MJ (2010a) Perspective on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19:3760–3772

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010b) Common factors drive adaptive genetic variation at different scale in Arabis alpina. Mol Ecol 19:2896–2907

    Article  PubMed  Google Scholar 

  • Meister B, Hofer U, Ursenbacher S, Baur B (2010) Spatial genetic analysis of the grass snake, Natrix natrix (Squamata: Colubridae) in an extensively used agricultural landscape. Biol J Linn Soc 101:51–58

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:1–5

    Article  Google Scholar 

  • Rousset F (2004) Genetic structure and selection in subdivided population. Princeton University Press, Princeton

    Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hard O, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Landscape genetics: concepts and challenges in a conservation context. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Slatkin M, Arter HE (1991) Spatial autocorrelation methods in population genetics. Am Nat 138:499–517

    Article  Google Scholar 

  • Soares TN, Chaves LJ, Telles MPC, Diniz-Filho JAF, Resende LV (2008) Landscape conservation genetics of Dipteryx alata (‘‘baru’’ tree: Fabaceae) from Cerrado region of central Brazil. Genetica 132:9–19

    Article  PubMed  CAS  Google Scholar 

  • Soares TN, Melo DB, Resende LV, Vianello RP, Chaves LJ, Collevatti RG, Telles MPC (2012) Development of microsatellite markers for the Neotropical tree species Dipteryx alata (Fabacea). Am J Bot 99:e72–e73

    Article  PubMed  Google Scholar 

  • Sokal RR, Jacquez GM (1991) Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis. Evolution 45:152–168

    Article  Google Scholar 

  • Sokal RR, Oden NL (1978a) Spatial autocorrelation in biology. 1. Methodology. Biol J Linn Soc 10:199–228

    Article  Google Scholar 

  • Sokal RR, Oden NL (1978b) Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc 10:229–249

    Article  Google Scholar 

  • Sokal RR, Wartenberg DE (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219–237

    PubMed  CAS  Google Scholar 

  • Sokal RR, Oden N, Thomson BA (1997) A simulation study of microevolutionary inferences by spatial autocorrelation analysis. Biol J Linn Soc 60:73–93

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Fortin MJ (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pedro Peres-Neto for several discussions about PSR/SSR curve and Guillaume Guénard for many suggestions that improved early versions of this manuscript. We also thank Thiago Santos for preparing the R-code that is available for analysis. This work was supported by several grants and fellowships to the research network GENPAC (Geographical Genetics and Regional Planning for natural resources in Brazilian Cerrado) from CNPq/MCT/CAPES (Projects # 564717/2010-0 and 563624/2010-8) and by the “Núcleo de Excelência em Genética e Conservação de Espécies do Cerrado”—GECER (PRONEX/FAPEG/CNPq CP 07-2009). Field work has been supported by Systema Naturae Consultoria Ambiental LTDA. Work by J.A.F.D.-F., L. M. B., T. F. R., M.P.C.T. and R.G.C. has been continuously supported by productivity fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alexandre Felizola Diniz-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz-Filho, J.A.F., Diniz, J.V.B.P.L., Rangel, T.F. et al. A new eigenfunction spatial analysis describing population genetic structure. Genetica 141, 479–489 (2013). https://doi.org/10.1007/s10709-013-9747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9747-0

Keywords

Navigation