, Volume 138, Issue 9–10, pp 951–957 | Cite as

Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae)

  • Carlos Roberto Maximiano da Silva
  • Carolina Cristina Quintas
  • André Luís Laforga Vanzela
Original Research


Studies of rDNA location in holocentric chromosomes of the Cyperaceae are scarce, but a few reports have indicated the occurrence of multiple 45S rDNA sites at terminal positions, and in the decondensed state of these regions in prometaphase/metaphase. To extend our knowledge of the number 45S and 5S rDNA sites and distribution in holocentric chromosomes of the Cyperaceae, 23 Brazilian species of Eleocharis were studied. FISH showed 45S rDNA signals always located in terminal regions, which varied from two (E. bonariensis with 2n = 20) to ten (E. flavescens with 2n = 10 and E. laeviglumis with 2n = 60). 5S rDNA showed less variation, with 16 species exhibiting two sites and 7 species four sites, preferentially at terminal positions, except for four species (E. subarticulata, E. flavescens, E. sellowiana and E. geniculata) that showed interstitial sites. The results are discussed in order to understand the predominance of terminal rDNA sites, the mechanisms involved in the interstitial positioning of 5S rDNA sites in some species, and the events of amplification and dispersion of 45S rDNA terminal sites.


FISH Holocentric chromosomes rDNA distribution DNA amplification 



The authors would like to thank the Brazilian agencies Fundação Araucária and CNPq for financial support. Dr. A. Leyva helped with English editing of the manuscript.


  1. Berjano R, Roa F, Talavera S, Guerra M (2009) Cytotaxonomy of diploid and polyploid Aristolochia (Aristolochiaceae) species based on the distribution of CMA/DAPI bands and 5S and 45S rDNA sites. Plant Syst Evol 280:219–227. doi: 10.1007/s00606-009-0184-6 CrossRefGoogle Scholar
  2. Da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocation. Bot J Linn Soc 149:457–464. doi: 10.1111/j.1095-8339.2005.00449.x CrossRefGoogle Scholar
  3. Da Silva CRM, González-Elizondo MS, Rego LNAA, Torezan JMD, Vanzela ALL (2008a) Cytogenetical and cytotaxonomical analysis of some Brazilian species of Eleocharis. Aust J Bot 56:82–90. doi: 10.1071/BT070170067-1924/08/010082 CrossRefGoogle Scholar
  4. Da Silva CRM, González-Elizondo MS, Vanzela ALL (2008b) Chromosome reduction in Eleocharis maculosa (Cyperaceae). Cytogenetic and Genome Res 122:175–180. doi: 10.1159/000163096 CrossRefGoogle Scholar
  5. Da Silva CRM, Trevisan R, González-Elizondo MS, Ferreira JM, Vanzela ALL (2010) Karyotypic diversification and its contribution to the taxonomy of Eleocharis (Cyperaceae) from Brazil. Aust J Bot 58:1–12. doi: 10.1071/BT091850067-1924/10/010001 CrossRefGoogle Scholar
  6. De Melo NF, Guerra MS (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316. doi: 10.1093/aob/mcg138 CrossRefPubMedGoogle Scholar
  7. Furuta T, Kondo K (1999) Sites of 18S–5.8S–26S rDNA sequences in diffused-centromeric chromosomes of Drosera falconerii. Chromosome Sci 3:69–73. doi: 00A0408029 Google Scholar
  8. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi: 10.1093/nar/7.7.1869 CrossRefPubMedGoogle Scholar
  9. González-Elizondo MS, Peterson PM (1997) A classification of and key to the supraspecific taxa in Eleocharis (Cyperaceae). Taxon 46:433–449. doi: 10.2307/1224386 CrossRefGoogle Scholar
  10. Govaerts R, Simpson DA, Bruhl JJ, Egorova T, Goetghebeur P, Wilson K (2007) World checklist of Cyperaceae. Kew Publishing, Sedges. KewGoogle Scholar
  11. Guerra MS (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041. doi: 10.1590/S1415-47572000000400049 Google Scholar
  12. Guerra MS, García M (2004) Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab(Convolvulaceae). Genome 47:134–140. doi: 10.1139/G03-098 CrossRefPubMedGoogle Scholar
  13. Håkansson A (1958) Holocentric chromosomes in Eleocharis. Hereditas 44:531–540CrossRefGoogle Scholar
  14. Hasterok R, Maluszynska J (2000) Cytogenetic markers of Brassica napus L. chromosome. J Appl Genet 41:1–9Google Scholar
  15. Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109. doi: 10.1007/s12229-008-9022-8 CrossRefGoogle Scholar
  16. Hoshi Y (1995) Chromosome studies in Drosera, the Droseraceae in connection with possible origin of the basic chromosome number of x = 10 well-differentiated in the North-hemisphere. Dissertation, Hiroshima UniversityGoogle Scholar
  17. Kwon J, Kim B (2009) Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol Cells 27:205–209. doi: 10.1007/s10059-009-0025-z CrossRefPubMedGoogle Scholar
  18. Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trend in Plant Science 2:470–476. doi: 10.1016/S1360-1385(97)01154-0 CrossRefGoogle Scholar
  19. Lim K, Wennekes J, Jong JH, Jacobsen E, Tuyl JM (2001) Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918. doi: 10.1139/gen-44-5-911 CrossRefPubMedGoogle Scholar
  20. Löve A, Löve D, Raymond M (1957) Cytotaxonomy of Carex section Cappilares. Can J Bot 35:715–761CrossRefGoogle Scholar
  21. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233. doi: 10.1139/gen-42-6-1224 CrossRefPubMedGoogle Scholar
  22. Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2:65–71. doi: 10.1007/BF01539456 CrossRefPubMedGoogle Scholar
  23. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357. doi: 10.1159/000121084 CrossRefPubMedGoogle Scholar
  24. Rego LNAA, Da Silva CRM, Torezan JMD, Gaeta ML, Vanzela ALL (2009) Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae). Plant Syst Evol 279:93–102. doi: 10.1007/s00606-009-0149-9 CrossRefGoogle Scholar
  25. Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev 74:209–393. doi: 10.1007/s12229-008-9011-y CrossRefGoogle Scholar
  26. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148. doi: 10.1007/BF00328466 CrossRefGoogle Scholar
  27. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-banded patterns. Chromosom today 9:61–74Google Scholar
  28. Vanzela ALL, Cuadrado A, Jouve N, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349. doi: 10.1023/A:1009279912631 CrossRefPubMedGoogle Scholar
  29. Vanzela ALL, Luceño M, Guerra M (2000) Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc 134:557–566. doi: 10.1006/bojl.2000.0352 CrossRefGoogle Scholar
  30. Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201. doi: 10.1590/S1415-47572003000200014 CrossRefGoogle Scholar
  31. Yano O, Katsuyama T, Tsubota H, Hoshino T (2004) Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. J Plant Res 117:409–419. doi: 10.1007/s10265-004-0173-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carlos Roberto Maximiano da Silva
    • 1
  • Carolina Cristina Quintas
    • 2
  • André Luís Laforga Vanzela
    • 2
  1. 1.Pós-graduação em Genética, Instituto de BiociênciasLetras e Ciências Exatas, UNESPSão José do Rio PretoBrazil
  2. 2.Laboratório de Biodiversidade e Restauração de Ecossistemas, Departamento de Biologia GeralCCB, Universidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations