Skip to main content
Log in

Mapping genome-wide QTL of ratio traits with Bayesian shrinkage analysis for its component traits

  • Original Research
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The ratio trait is defined as a ratio of two regular quantitative traits with normal distribution, which is distinguished from regular quantitative traits in the genetic analysis because it does not follow the normal distribution. On the basis of maximum likelihood method that uses a special linear combination of the two component traits, we develop a Bayesian mapping strategy for ratio traits, which firstly analyzes the two component traits by Bayesian shrinkage method, and then generates a new posterior sample of genetic effects for a ratio trait from ones of population means and genetic effects for the two component traits, finally, infers QTL for the ratio trait via post MCMC analysis for the new posterior sample. A simulation study demonstrates that the new method has higher detecting power of the QTL than maximum likelihood method. An application is illustrated to map genome-wide QTL for relative growth rate of height on soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179:2275–2289

    Article  PubMed  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Koohmaraie M, Smith TPL, Stone RT (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J Anim Sci 81:2976–2983

    CAS  PubMed  Google Scholar 

  • Chib S, Greenberg E (1998) Analysis of multivariate probit models. Biometrika 2:347–361

    Article  Google Scholar 

  • Coppieters W, Kvasz A, Arranz JJ, Grisart B, Farnir F, Mackinnon M, Georges M (1998) A rank-based non parametric method to map QTL in outbred half-sib pedigrees: application to milk production in a grand-daughter design. Genetics 149:1547–1555

    CAS  PubMed  Google Scholar 

  • Corander J, Sillanpää MJ (2002) An unified approach to joint modeling of multiple quantitative and qualitative traits in gene mapping. J Theor Biol 218:435–446

    CAS  PubMed  Google Scholar 

  • Gunsett FC (1984) Linear index selection to improve traits defined as ratios. J Anim Sci 59:1185–1193

    Google Scholar 

  • Gunsett FC (1987) Merit of utilizing the heritability of a ratio to predict genetic change of a ratio. J Anim Sci 65:936–942

    Google Scholar 

  • Gunsett FC, Andriano KN, Rutledge JJ (1982) Estimating the precision of estimates of genetic parameters realized from multiple-trait selection experiments. Biometrics 4:981–989

    Article  Google Scholar 

  • Hackett CA (1997) Model diagnostics for fitting QTL models to trait and marker data by interval mapping. Heredity 79:319–328

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Hinkley DV (1969) On the ratio of two correlated normal random variables. Biometrika 56:635–639

    Article  Google Scholar 

  • Jansen RC (1992) A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet 85:252–260

    Article  CAS  Google Scholar 

  • Jin C, Fine JP, Yandell BS (2007) A unified semiparametric framework for quantitative trait loci analyses, with application to Spike phenotypes. JASA 477:56–67

    Google Scholar 

  • Kao CH (2000) On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156:855–865

    CAS  PubMed  Google Scholar 

  • Kendall M, Stuart A (1979) The advanced theory of statistics, 4th edn. Griffin, London

    Google Scholar 

  • Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    CAS  PubMed  Google Scholar 

  • Mao Y, Xu S (2004) Mapping QTLs for traits measured as percentages. Genet Res 83:159–168

    Article  PubMed  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  CAS  Google Scholar 

  • Rebaï A (1997) Comparison of methods for regression interval mapping in QTL analysis with non-normal traits. Genet Res 69:69–74

    Article  Google Scholar 

  • Rohr PV, Hoeschele I (2002) Bayesian QTL mapping using skewed Student-t distributions. Genet Sel Evol 34:1–2

    Article  Google Scholar 

  • Satagopan JM, Yandell BS (1996) Estimating the number of quantitative trait loci via Bayesian model determination. Special contributed paper session on genetic analysis of quantitative traits and complex diseases, biometrics section, joint Statistical meetings. Chicago, IL

    Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    CAS  PubMed  Google Scholar 

  • Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151:1605–1619

    PubMed  Google Scholar 

  • Stephens DA, Fisch RD (1998) Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Biometrics 54:1334–1347

    Article  Google Scholar 

  • Sun D, Li W, Zhang Z, Cheng Q, Yang Q (2006) Analysis of QTL for plant height at different developmental stages in soybean. Acta Agronomica Sinica 4:509–514

    Google Scholar 

  • Sutherland TM (1965) The correlation between feed efficiency and rate of gain, a ratio and its denominator. Biometrics 21:739–749

    Article  CAS  PubMed  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 2–3:277–288

    Google Scholar 

  • Uimari P, Sillanpää MJ (2001) Bayesian oligogenic analysis of quantitative and qualitative traits in general pedigrees. Genet Epidemiol 21:224–242

    Article  CAS  PubMed  Google Scholar 

  • Van Kaam JB, Bink MC, Bovenhuis H, Quaas RL (2002) Scaling to account for heterogeneous variances in a Bayesian analysis of broiler quantitative trait loci. J Anim Sci 80:45–56

    PubMed  Google Scholar 

  • Viitala SM, Schulman NF, De Koning DJ, Elo K, Kinos R, Virta A, Virta J, Mäki-Tanila A, Vilkki JH (2003) Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J Dairy Sci 86:1828–1836

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170:465–480

    Article  CAS  PubMed  Google Scholar 

  • Weller JI, Golik M, Seroussi E, Ezra E, Ron M (2003) Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population. J Dairy Sci 86:2219–2227

    Article  CAS  PubMed  Google Scholar 

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    CAS  PubMed  Google Scholar 

  • Xu C, Wang X, Li Z, Xu S (2009) Mapping QTL for multiple traits using Bayesian statistics. Genet Res 91:23–37

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Xu S (2007) Bayesian shrinkage analysis of quantitative trait loci for dynamic traits. Genetics 176:1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Yi N, Xu S (2006) Box-Cox transformation for QTL mapping. Genetica 128:133–143

    Article  PubMed  Google Scholar 

  • Yang R, Li J, Xu S (2008) Mapping quantitative trait loci for traits defined as ratios. Genetica 132:323–329

    Article  PubMed  Google Scholar 

  • Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model. Genetics 156:411–422

    CAS  PubMed  Google Scholar 

  • Yi N, Xu S (2002) Mapping quantitative trait loci with epistatic effects. Genet Res 79:185–198

    Article  PubMed  Google Scholar 

  • Yi N, Allison DB, Xu S (2003a) Bayesian model choice and search strategies for mapping multiple epistatic quantitative trait loci. Genetics 165:867–883

    CAS  PubMed  Google Scholar 

  • Yi N, George V, Allison DB (2003b) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164:1129–1138

    CAS  PubMed  Google Scholar 

  • Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics 170:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Zellner A (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 57:348–368

    Article  Google Scholar 

  • Zhang YM, Xu S (2005) Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Devel Genet Breed 2:1–23

    Google Scholar 

  • Zou F, Fine JP, Yandell BS (2002) On empirical likelihood for a semiparametric mixture model. Biometrika 89:61–75

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Chinese National Natural Science Foundation Grant 30972077 to RY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Jin, T. & Li, W. Mapping genome-wide QTL of ratio traits with Bayesian shrinkage analysis for its component traits. Genetica 138, 853–860 (2010). https://doi.org/10.1007/s10709-010-9468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9468-6

Keywords

Navigation