Skip to main content
Log in

Genetic characterization of asymmetric reciprocal hybridization between the flatfishes Paralichthys olivaceus and Paralichthys dentatus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Interspecific reciprocal crosses between the two flatfishes Paralichthys olivaceus and P. dentatus yielded hybrids with different viabilities. Specifically, the hybrids of P. olivaceus female and P. dentatus male (HI) were found to be viable, while the reciprocal hybrids from P. dentatus female and P. olivaceus male (HII) were completely inviable. All the HII individuals showed morphological deformities and died before first feeding. The chromosome analysis showed that HI individuals had the same chromosome number as parents. However, two chromosomes were missing in HII offspring indicating that the latter were aneuploids. Genomic inheritance from the parents to F1 progeny was also examined by amplified fragment length polymorphism (AFLP) analyses, and the results showed differences between reciprocal hybrids. Almost all AFLP bands (97.71%) observed in parents were passed on to HI individuals. In contrast, only 86.64% of the AFLP bands from parents were scored in HII individuals. Frequency of lost parental bands was thus significantly higher in HII than that in HI and intraspecific crosses, which was probably associated with chromosomal elimination. In addition, higher segregation distortions were found in hybrids than in controls, although these differences were not significant. The present study indicates that chromosomal elimination and loss of AFLP loci occurred in inviable HII individuals, while such genomic changes were not found in viable HI individuals. Possible implications of such difference on genomic changes for asymmetric viability in reciprocal hybrids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai K (1984) Developmental genetic studies on salmonids: morphogenesis, isozyme phenotypes and chromosomes in hybrid embryos. Mem Fac Fish Hokkaido Univ 30:1–91

    Google Scholar 

  • Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518. doi:10.1016/j.gde.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  • Bengtson DA (1999) Aquaculture of summer flounder (Paralichthys dentatus): status of knowledge, current research and future research priorities. Aquaculture 176:39–49. doi:10.1016/S0044-8486(99)00048-4

    Article  Google Scholar 

  • Bierne N, Bonhomme F, Boudry P, Szulkin M, David P (2006) Fitness landscapes support the dominance theory of post-zygotic isolation in the mussels Mytilus edulis and M. galloprovincialis. Proc R Soc Lond B Biol Sci 273:1253–1260. doi:10.1098/rspb.2005.3440

    Article  CAS  Google Scholar 

  • Bolnick DI, Near TJ (2005) Tempo of hybrid inviability in centrarchid fishes (Teleostei: centrarchidae). Evol Int J Org Evol 59:1754–1767

    Google Scholar 

  • Chen L, Lou Q, Zhuang Y, Chen J, Zhang X, Wolukau JN (2007) Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus. Planta 225:603–614. doi:10.1007/s00425-006-0381-2

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evol Int J Org Evol 43:362–381. doi:10.2307/2409213

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, pp 247–308

    Google Scholar 

  • Davies DR (1974) Chromosome elimination in interspecific hybrids. Heredity 32:267–270. doi:10.1038/hdy.1974.30

    Article  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evol Int J Org Evol 57:2721–2741

    Google Scholar 

  • Divakaran M, Babu KN, Ravindran PN, Peter KV (2006) Interspecific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Hortic (Amsterdam) 108:414–422. doi:10.1016/j.scienta.2006.02.018

    Article  CAS  Google Scholar 

  • Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327

    PubMed  CAS  Google Scholar 

  • Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106:44–52. doi:10.1007/s004120050223

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417. doi:10.1105/tpc.107.054346

    Article  PubMed  CAS  Google Scholar 

  • Gardner RJM, Sutherland GR (2004) Chromosome abnormalities and genetic counseling. Oxford University Press, USA, pp 21–50

    Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brü C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438. doi:10.1105/tpc.105.034249

    Article  PubMed  CAS  Google Scholar 

  • Henderson-Arzapalo A, Colura RL, Maciorowski AF (1994) A comparison of black drum, red drum, and their hybrid in saltwater pond culture. J World Aquacult Soc 25:289–296. doi:10.1111/j.1749-7345.1994.tb00193.x

    Article  Google Scholar 

  • Hua Y, Liu M, Li Z (2006) Parental genome separation and elimination of cells and chromosomes revealed by AFLP and GISH analyses in a Brassica carinata × Orychophragmus violaceus cross. Ann Bot (Lond) 97:993–998. doi:10.1093/aob/mcl073

    Article  Google Scholar 

  • Jones RN, Pasakinskiene I (2005) Genome conflict in the gramineae. New Phytol 165:391–410. doi:10.1111/j.1469-8137.2004.01225.x

    Article  PubMed  Google Scholar 

  • Kim KK, Bang IC, Kim Y, Nam YK, Kim DS (1996) Early survival and chromosomes of intergenric hybrids between Japanese flounder Paralichthys olivaceus and spotted halibut Verasper variegates. Fish Sci 62:490–491

    CAS  Google Scholar 

  • Leitao A, Boudry P, Thiriot-Quiévreux C (2001) Negative correlation between aneuploidy and growth in the Pacific oyster, Crassostrea gigas: ten years of evidence. Aquaculture 193:39–48. doi:10.1016/S0044-8486(00)00488-9

    Article  Google Scholar 

  • Linde-Laursen I, Bothmer R (1993) Aberant meiotic divisions in a Hordeum lechleri × H. vulgare hybrid. Hereditas 118:145–153. doi:10.1111/j.1601-5223.1993.00145.x

    Article  Google Scholar 

  • Liu M, Li ZY (2007) Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome 50:985–993. doi:10.1139/G07-071

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–505. doi:10.2174/1389202023350255

    Article  CAS  Google Scholar 

  • Liu Z, Nichols A, Li P, Dunham RA (1998) Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Mol Gen Genet 258:260–268. doi:10.1007/s004380050730

    Article  PubMed  CAS  Google Scholar 

  • López-Fernández H, Bolnick DI (2007) What causes partial F1 hybrid viability? Incomplete penetrance versus genetic variation. PLoS ONE 2:1–8. doi:10.1371/journal.pone.0001294

    Article  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557. doi:10.1146/annurev.ge.25.120191.002455

    Article  PubMed  CAS  Google Scholar 

  • Marfil CF, Masuelli RW, Davison J, Comai L (2006) Genomic instability in Solanum tuberosum × Solanum kurtzianum interspecific hybrids. Genome 49:104–113

    PubMed  CAS  Google Scholar 

  • McCombie H, Lapègue S, Cornette F, Ledu C, Boudry P (2005) Chromosome loss in bi-parental progenies of tetraploid Pacific oyster Crassostrea gigas. Aquaculture 247:97–105. doi:10.1016/j.aquaculture.2005.02.003

    Article  CAS  Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358. doi:10.1016/S0169-5347(01)02187-5

    Article  PubMed  Google Scholar 

  • Rogers SM, Bernatchez L (2006) The genetic basis of intrinsic and extrinsic post-zygotic reproductive isolation jointly promoting speciation in the lake whitefish species complex (Coregonus clupeaformis). J Evol Biol 19:1979–1994. doi:10.1111/j.1420-9101.2006.01150.x

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Springs Harbour Laboratory Press, Cold Springs Harbour, pp 460–470

    Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723. doi:10.1073/pnas.92.17.7719

    Article  PubMed  CAS  Google Scholar 

  • Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611. doi:10.1534/genetics.106.057646

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angerosperms. Proc R Soc Lond B Biol Sci 268:861–867. doi:10.1098/rspb.2000.1578

    Article  CAS  Google Scholar 

  • Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176:1059–1088. doi:10.1534/genetics.106.065979

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Tiersch TR (1997) Chromosomal inheritance patterns of intergeneric hybrids of ictalurid catfishes: odd diploid numbers with equal parental contributions. J Fish Biol 51:1073–1084. doi:10.1111/j.1095-8649.1997.tb01128.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (30571445), the National 863 High Technology Research Foundation of China (2006AA10A404) and project from the Ministry of Science and technology of China (2006DKA30470-017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng You or Peijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., You, F., Wu, Z. et al. Genetic characterization of asymmetric reciprocal hybridization between the flatfishes Paralichthys olivaceus and Paralichthys dentatus . Genetica 137, 151–158 (2009). https://doi.org/10.1007/s10709-009-9373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9373-z

Keywords

Navigation