Skip to main content

Advertisement

Log in

Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The elusive nature and endangered status of most carnivore species imply that efficient approaches for their non-invasive sampling are required to allow for genetic and ecological studies. Faecal samples are a major potential source of information, and reliable approaches are needed to foster their application in this field, particularly in areas where few studies have been conducted. A major obstacle to the reliable use of faecal samples is their uncertain species-level identification in the field, an issue that can be addressed with DNA-based assays. In this study we describe a sequence-based approach that efficiently distinguishes jaguar versus puma scats, and that presents several desirable properties: (1) considerably high amplification and sequencing rates; (2) multiple diagnostic sites reliably differentiating the two focal species; (3) high information content that allows for future application in other carnivores; (4) no evidence of amplification of prey DNA; and (5) no evidence of amplification of a nuclear mitochondrial DNA insertion known to occur in the jaguar. We demonstrate the reliability and usefulness of this approach by evaluating 55 field-collected samples from four locations in the highly fragmented Atlantic Forest biome of Brazil and Argentina, and document the presence of one or both of these endangered felids in each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Adams JR, Kelly BT, Waits LP (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12:2175–2186. doi:10.1046/j.1365-294X.2003.01895.x

    Article  PubMed  CAS  Google Scholar 

  • Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented ranger of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516. doi:10.1111/j.1365-294X.2006.03159.x

    Article  PubMed  Google Scholar 

  • Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48. doi:10.1186/1471-2156-7-48

    Article  PubMed  Google Scholar 

  • Chame M (2003) Terrestrial mammal feces: a morphometric summary and description. Mem Inst Oswaldo Cruz 98:71–94. doi:10.1590/S0074-02762003000900014

    Article  PubMed  Google Scholar 

  • Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool (Lond) 257:141–143. doi:10.1017/S0952836902000730

    Article  Google Scholar 

  • Emmons LH (1987) Comparative feeding ecology of felids in a Neotropical rainforest. Behav Ecol Sociobiol 20:271–283. doi:10.1007/BF00292180

    Article  Google Scholar 

  • Ernest HB, Boyce WM, Bleich VC, Stiver SJ, Torres ST (2003) Genetic structure of mountain lion (Puma concolor) populations in California. Conserv Genet 4:353–366. doi:10.1023/A:1024069014911

    Article  CAS  Google Scholar 

  • Farrell LE, Romant J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590. doi:10.1046/j.1365-294x.2000.01037.x

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, Eizirik E, Roelke-Parker M, O’Brien SJ (2001) Applications of genetic concepts and molecular methods to carnivore conservation. In: Gittleman JL, Funk SM, MacDonald D, Wayne RK (eds) Carnivore conservation. Cambridge University Press, Cambridge, pp 335–358

    Google Scholar 

  • Kim J-H, Antunes A, Luo S-J et al (2006) Evolutionary analysis of a large mtDNA translocation (Numt) into the nuclear genome of the Panthera genus species. Gene 366:292–302. doi:10.1016/j.gene.2005.08.023

    Article  PubMed  CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci 266:657–663. doi:10.1098/rspb.1999.0686

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150–163. doi:10.1186/1471-2105-5-150

    Article  PubMed  CAS  Google Scholar 

  • Lucentini L, Vercillo F, Palomba A, Panara F, Ragni B (2007) A PCR-RFLP method on faecal samples to distinguish Martes martes, Martes foina, Mustela putorius and Vulpes vulpes. Conserv Genet 8:757–759. doi:10.1007/s10592-006-9203-0

    Article  Google Scholar 

  • Miotto RA, Rodrigues FP, Ciocheti G, Galetti PM Jr (2007) Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected Cerrado areas in the brazilian southeast. Biotropica 39:647–654. doi:10.1111/j.1744-7429.2007.00315.x

    Article  Google Scholar 

  • Novack AJ (2003) Impacts of subsistence hunting on the foraging ecology of jaguar and puma in the Maya Biosphere Reserve, Guatemala. M.Sc. Thesis, University of Florida

  • Novack AJ, Main MB, Sunquist ME, Labisky RF (2005) Foraging ecology of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. J Zool (Lond) 267:167–178. doi:10.1017/S0952836905007338

    Article  Google Scholar 

  • Nowell K, Jackson P (1996) Wilds cats: status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Onorato D, White C, Zager P, Waits LP (2006) Detection of predator presence at elk mortality sites using mtDNA analysis of hair and scat samples. Wildl Soc Bull 34:815–882. doi:10.2193/0091-7648(2006)34[815:DOPPAE]2.0.CO;2

    Article  Google Scholar 

  • Palomares F, Godoy JA, Piriz A, O’Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182. doi:10.1046/j.1365-294X.2002.01608.x

    Article  PubMed  CAS  Google Scholar 

  • Parsons KM (2001) Reliable microsatellite genotyping of dolphin DNA from faeces. Mol Ecol Notes 1:341–344

    Article  CAS  Google Scholar 

  • Pilgrim KL, Mckelvey KS, Riddle AE, Schwartz MK (2005) Felid sex identification based on noninvasive genetic samples. Mol Ecol 5:60–61

    Article  CAS  Google Scholar 

  • Pilot M, Gralak B, Goszczynski J, Postuszny M (2007) A method of genetic identification of pine marten (Martes martes) and stone marten (Marten foina) and its application to faecal samples. J Zool (Lond) 271:140–147. doi:10.1111/j.1469-7998.2006.00179.x

    Article  Google Scholar 

  • Polisar J (2002) Componentes de la base de presas de jaguar y puma en Piñero, Venezuela. In: Medellín RA, Equihua C, Chetkiewicz CL, Crawshaw PG Jr, Rabinowitz A, Redford KH, Robinson JG, Sanderson EW, Taber AB (eds) El Jaguar en el nuevo milenio. Universidad Nacional Autonoma de Mexico/Wildlife Conservation Society, México, pp 151–182

    Google Scholar 

  • Reed JZ, Tollit DJ, Thompson PM, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identify to seal faeces. Mol Ecol 6:225–234. doi:10.1046/j.1365-294X.1997.00175.x

    Article  PubMed  CAS  Google Scholar 

  • Reed JE, Baker RJ, Ballard WB, Kelly BT (2004) Differentiating Mexican gray wolf and coyote seats using DNA analysis. Wildl Soc Bull 32:685–692. doi:10.2193/0091-7648(2004)032[0685:DMGWAC]2.0.CO;2

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 9:945–967

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Silveira L (2004) Ecologia comparada e conservação da onça-pintada (Panthera onca) e onça-parda (Puma concolor), no Cerrado e Pantanal. Ph.D. Thesis, University of Brasília

  • Sloane MA, Sunnucks P, Alpers D, Beheregaray LB, Taylor AC (2000) Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censuring method. Mol Ecol 9:1233–1240. doi:10.1046/j.1365-294x.2000.00993.x

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327. doi:10.1016/S0169-5347(99)01637-7

    Article  PubMed  Google Scholar 

  • Trigo TC, Freitas TR, Kunzler G, Cardoso L, Silva JC, Johnson WE, O'Brien SJ, Bonatto SL, Eizirik E (2008) Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol Ecol 17:4317–4333

    Article  PubMed  CAS  Google Scholar 

  • Wan QH, Fang SG, Chen GF et al (2003) Use of oligonucleotide fingerprinting and faecal DNA in identifying the distribution of the Chinese tiger (Panthera tigris amoyensis Hilzheimer). Biodivers Conserv 12:1641–1648. doi:10.1023/A:1023693613608

    Article  Google Scholar 

  • Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain SR (1997) Techniques for application of faecal DNA methods to filed studies of Ursids. Mol Ecol 6:1091–1097. doi:10.1046/j.1365-294X.1997.00281.x

    Article  PubMed  CAS  Google Scholar 

  • Weckel M, Giuliano W, Silver S (2006) Jaguar diet in the Cockscomb Basin Wildlife Sanctuary, Belize. Biotropica 38:687–690. doi:10.1111/j.1744-7429.2006.00190.x

    Article  Google Scholar 

  • Zhang D-X, Hewitt GM (1996) Nuclear integration: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–251. doi:10.1016/0169-5347(96)10031-8

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the institutions and people who helped with collection of biological samples used in this study, including those mentioned in Table 1, as well as Warren E. Johnson, Stephen J. O’Brien, Peter G. Crawshaw Jr., Laury Cullen Jr., Alessandra Nava, Leonardo R. Viana, Adriano G. Chiarello, Cristian Corio, Esteban Hasson, Agustín Paviolo and Mario Di Bitteti. We especially thank Paulo B. Chaves for technical assistance and suggestions, as well as access to unpublished data on ocelot ATP6 sequences. We are also grateful to the Centro Nacional de Pesquisas para a Conservação de Predadores Naturais (CENAP/ICMBio), Instituto Pró-Carnívoros, Companhia Energética de São Paulo (CESP) and Instituto Ambiental Vale for having supported this project, and the Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, for help in the analysis of scat samples from Argentina. T. Haag is supported by a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Eizirik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haag, T., Santos, A.S., De Angelo, C. et al. Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica 136, 505–512 (2009). https://doi.org/10.1007/s10709-008-9347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9347-6

Keywords

Navigation