Skip to main content
Log in

Bayesian joint mapping of quantitative trait loci for Gaussian and categorical characters in line crosses

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Methodology for joint mapping of quantitative trait loci (QTL) affecting continuous and binary characters in experimental crosses is presented. The procedure consists of a Bayesian Gaussian-threshold model implemented via Markov chain Monte Carlo, which bypasses bottlenecks due to high-dimensional integrals required in maximum likelihood approaches. The method handles multiple binary traits and multiple QTL. Modeling of ordered categorical traits is discussed as well. Features of the method are illustrated using simulated datasets representing a backcross design, and the data are analyzed using mixed-trait and single-trait models. The mixed-trait analysis provides greater detection power of a QTL than a single-trait analysis when the QTL affects two or more traits. The number of QTL inferred in the mixed-trait analysis does not pertain to a specific trait, but the roles of each QTL on specific traits can be assessed from estimates of its effects. The impacts of varying incidence level and sample size on the mixed-trait QTL mapping analysis are investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BC:

Backcross

EM:

Expectation-maximization

MCMC:

Markov chain Monte Carlo

QTL:

Quantitative trait loci

References

  • Albert JH, Chib S (1997) Bayesian methods for cumulative, sequential and two-step ordinal data regression models. Technical Report, Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH

  • Chib S, Greenberg E (1996) Markov chain Monte Carlo simulation methods in econometrics. Economet Theory 12(3):409–431

    Article  Google Scholar 

  • Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35(2):212–236

    PubMed  CAS  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, New York

    Google Scholar 

  • Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54(5):1079–1096

    Google Scholar 

  • Hackett CA, Meyer RC, Thomas WTB (2001) Multitrait QTL mapping in barley using multivariate regression. Genet Res 77(1):95–106

    Article  PubMed  CAS  Google Scholar 

  • Henshall JM, Goddard ME (1999) Multiple trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics 151(2):885–894

    PubMed  CAS  Google Scholar 

  • Jannink JL, Fernando RL (2004) On the metropolis-hastings acceptance probability to add or drop a quantitative trait locus in Markov chain Monte Carlo-based Bayesian analysis. Genetics 166(1):641–643

    Article  PubMed  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(3):1111–1127

    PubMed  CAS  Google Scholar 

  • Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156(2):899–911

    PubMed  CAS  Google Scholar 

  • König S, Lessner S, Simianer H (2007) Application of controlling instruments for improvements in cow sire selection. J Dairy Sci 90(4):1967–1980

    Article  PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YT, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140(3):1137–1147

    PubMed  CAS  Google Scholar 

  • Korsgaard IR, Lund MS, Sorensen D, Gianola D, Madsen P, Jensen J (2003) Multivariate Bayesian analysis of Gaussian, right censored Gaussian, ordered categorical and binary traits using Gibbs sampling. Genet Sel Evol 35(2):159–183

    Article  PubMed  Google Scholar 

  • Liu J, Liu Y, Liu X, Deng HW (2007) Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components. Am J Hum Genet 81(2):304–320

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunland

    Google Scholar 

  • Mangin B, Thoquet P, Grimslev N (1998) Pleiotropic QTL analysis. Biometrics 54(1):88–99

    Article  Google Scholar 

  • Rao S, Xia L (2000) Strategies for genetic mapping of categorical traits. Genetica 109(3):183–197

    Article  PubMed  CAS  Google Scholar 

  • Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148(3):1373–1388

    PubMed  CAS  Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer-Verlag, New York

    Google Scholar 

  • Uimari P, Hoeschele I (1997) Mapping linked quantitative trait loci using Bayesian method analysis and Markov chain Monte Carlo algorithms. Genetics 146(2):735–743

    PubMed  CAS  Google Scholar 

  • Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet 65(4):1134–1147

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1934) The results of crosses between inbred strains of guinea pigs differing in number of digits. Genetics 19(6):537–551

    PubMed  CAS  Google Scholar 

  • Wu XL, Jannink JL (2004) Optimal sampling of a population to determine QTL location, variance, and allelic number. Genet Res 108(7):1434–1442

    Google Scholar 

  • Xu S, Atchley WR (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143(3):1417–1424

    PubMed  CAS  Google Scholar 

  • Xu C, Li Z, Xu S (2005) Joint mapping of quantitative trait Loci for multiple binary characters. Genetics 169(2):1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155(3):1391–1403

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S, George V, Allison DB (2004) Mapping multiple quantitative trait loci for ordinal traits. Behav Genet 34(1):3–15

    Article  PubMed  Google Scholar 

  • Yi N, Banerjee S, Pomp D, Yandell B (2007) Bayesian mapping of genome-wide interacting QTL for ordinal traits. Genetics 176(3):1855–1864

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the University of Wisconsin-Madison, and by grants NRICGP/USDA 2003-35205-12833, NSF DEB-0089742, and NSF DMS-044371, as well as an Industrial and Economic Development Grant from the Graduate School at the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lin Wu.

Appendix

Appendix

Bayesian QTL mapping involving ordered categorical traits

Ordered categorical characters can be handled similarly to binary characters, except that the former involve c > 2 categories and c + 1 thresholds that delimit these categories. In the Bayesian analysis, if the first threshold for each trait is fixed at zero, the remaining thresholds need to be estimated in the analysis. Let \( {\varvec{\uptheta}} = \left( {{\varvec{\upkappa}},{\mathbf{l}},{\mathbf{q}},{\varvec{\upbeta}},{\mathbf{Q}},{\mathbf{R}}} \right) \), where \( {\varvec{\upkappa}} = \left\{ {\kappa _{{ki}} |i = 1, \ldots ,c-1;k = g + 1, \ldots ,t} \right\} \) contains all unknown thresholds. If a uniform prior is used for the thresholds, the joint posterior distribution of the unknowns is as in (6), because the prior density of κ is a constant.

The fully conditional distribution of a threshold, say κ ki , can be shown to be the uniform process (Sorensen and Gianola 2002). Alternatively, thresholds can be sampled more efficiently using the Metropolis-Hastings algorithm described by Albert and Chib (1997). In the MCMC, an extra step is needed to sample unknown thresholds, after liabilities are generated.

For the sake of parameter identification, the first threshold is often set to be 0 and the variance to 1 for each ordinal character. In this case, the residual covariance matrix is sampled exactly as in the model with binary trait(s). Alternatively, one may choose to fix the first two thresholds of each ordinary character to 0 and 1, respectively, allowing for the residual covariance matrix to be sampled conveniently from the standard inverse Wishart distribution:

$$ {\mathbf{R}}|{\mathbf{ELSE}}\sim W^{{ - 1}} \left( {\upsilon _{R} + n,{\varvec{\Upsigma}}_{\varvec{R}} + \sum\limits_{j}^{n} {\left[ {\left( {{\mathbf{y}}_{j} - \sum\limits_{{i = 1}}^{m} {{\mathbf{W}}_{{ji}} } {\mathbf{q}}_{i} - {\mathbf{X}}_{j} {\varvec{\upbeta}}} \right)\left( {{\mathbf{y}}_{j} - \sum\limits_{{i = 1}}^{m} {{\mathbf{W}}_{{ji}} } {\mathbf{q}}_{i} - {\mathbf{X}}_{j} {\varvec{\upbeta}}} \right)'} \right]} } \right) $$
(A1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XL., Gianola, D. & Weigel, K. Bayesian joint mapping of quantitative trait loci for Gaussian and categorical characters in line crosses. Genetica 135, 367–377 (2009). https://doi.org/10.1007/s10709-008-9283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9283-5

Keywords

Navigation