Skip to main content
Log in

Natural hybridization between Phlomis lycia D. Don × P. bourgaei Boiss., (Lamiaceae) revealed by RAPD markers

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Randomly Amplified Polymorphic DNA markers (RAPD) were used to assess the hybrid identity of individuals sampled as Phlomis × termessi Davis. Out of 95 primers screened, 11 primers produced reproducible amplification patterns used for discrimination of P. × termessi and their parents. Eleven primers produced 81 bands. Forty two percent of the RAPD bands existed in parents. Of the 54 bands found in P. lycia, 19 were found only in this species and 7 of these were monomorphic. Similarly, of 57 RAPD bands observed in P. bourgaei, 18 were found only in P. bourgaei and 6 of these were monomorphic. Among hybrid individuals, 35 of the 73 markers were monomorphic. Fifteen of these existed in individual parents showing that parents were homozygous for these markers. Of the 35 monomorphic bands observed among hybrid individuals, 5 were present in the samples of one of the parents and completely absent from the samples of the other; therefore, additive inheritance is indicated. Of the 5 additive bands, 1 was inherited from P. bourgaei and 4 were inherited from P. lycia. Among 38 polymorhic markers observed in hybrid individuals, 9 were new and hybrid-specific. Pollen fertility was also investigated. Mean pollen fertility for P. lycia and P. bourgaei was 93% and 97% respectively. However, mean pollen fertility for hybrids was 65% (±10.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with the hybrids:setting conservation guidelines. Trends Ecol Evol 16(11):613–622

    Article  Google Scholar 

  • Aparicio A (1997) Fitness components of the hybrid Phlomis × margaritae Aparicio and Silvestre (Lamiaceae). Bot J Linn Soc 124(4):331–343

    Article  Google Scholar 

  • Arnold ML, Hodges SA (1995) Are natural hybrids fit or unfit relative to their parents? Trends Ecol Evol 10(2):67–71

    Article  Google Scholar 

  • Azizian D, Moore DM (1982) Morphological and palynological studies in Phlomis L. and Eremostachys Bunge (Labiatae). Bot J Linn Soc 85:249–281

    Article  Google Scholar 

  • Barraclough TG, Nee S (2001) Phylogenetics and speciation. Trends Ecol Evol 16(7):391–399

    Article  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartin maritima and the introduced Spartina alterniflora (Poaceae) in South-west France: Spartina × neyrautii re-examined. Pl Syst Evol 237(1–2):87–97

    Article  CAS  Google Scholar 

  • Bleeker W, Matthies A (2005) Hybrid zones between invasive Rorippa austriaca and native R. sylvestris (Brassicaceae) in Germany: ploidy levels and patterns of fitness in the field. Heredity 94:664–670

    Article  PubMed  CAS  Google Scholar 

  • Caraway V, Carr GD, Morden CW (2001) Assessment of hybridization and introgression in lava-colonizing Hawaiian Dubautia (Asteraceae: Madiinae) using RAPD markers. Amer J Bot 88(9):1688–1694

    Article  CAS  Google Scholar 

  • Cheng BF, Seguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115

    Article  PubMed  CAS  Google Scholar 

  • Dadandi MY (2003) A new natural hybrid of Phlomis L. (Lamiaceae) from South Anatolia. The Karaca Arboretum Magazine 7(2):59–66

    Google Scholar 

  • Dadandi MY, Duman H (2003) A new natural hybrid of Phlomis (Lamiaceae) from Turkey. Ann Bot Fenn 40(4):287–290

    Google Scholar 

  • Davis PH (1951) Labiatae, Phlomis × termessi. Kew Bull 1951:93

    Google Scholar 

  • Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090–5093

    Article  PubMed  CAS  Google Scholar 

  • Endress PK (2002) Morphology and angiosperm systematics in the molecular era. Bot Rev 68(4):545–570

    Article  Google Scholar 

  • Faure N, Serieys H, Cazaux E, Kaan F, Berville A (2002) Partial hybridization in wide crosses between cultivated sunflower and the perennial Helianthus species H. mollis and H. orgyalis. Ann Bot 89:31–39

    Article  PubMed  CAS  Google Scholar 

  • Gobert V, Moja S, Colson M, Taberlet P (2002) Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am J Bot 89(12):2017–2023

    Article  CAS  Google Scholar 

  • Hedrick PW (1981) The establishment of chromosomal variants. Evolution 35:322–332

    Article  Google Scholar 

  • Hegarty MJ, Hiscock SM (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423

    Article  PubMed  CAS  Google Scholar 

  • Heiser CB (1947) Hybridization between the sunflower species Helianthus annus and H. petiolaris. Evolution 1:249–262

    Article  Google Scholar 

  • Huber-Morath A (1982) Phlomis L. In: Davis PH (ed) Flora of Turkey and East Aegean Island, vol 7. Edinburgh Univ. Press, Edinburgh, pp 102–126

    Google Scholar 

  • Isoda K, Shiraishi S, Watanabe S, Kitamura K (2000) Molecular evidence of natural hybridization between Abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Mol Ecol 9:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Johnston JA, Donovan LA, Arnold ML (2004) Novel phenotypes among early generation hybrids of two Louisiana iris species: flooding experiments. J Ecol 92:967–976

    Article  Google Scholar 

  • Lowe AJ, Abbott RJ (2000) Routes of origin of two recently evolved hybrid taxa: Senecio vulgaris var. hibernicus and York radiate groundsel (Asteraceae). Am J Bot 87(8):1159–1167

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–293

    Article  Google Scholar 

  • Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. Am J Bot 87(12):1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Randell RA, Howarth DG, Morden CW (2004) Genetic analysis of natural hybrids between endemic and alien Rubus (Rosaceae) species in Hawaii. Conserv Genet 5(2):217–230

    Article  CAS  Google Scholar 

  • Rieseberg LH (1999) Hybrid classification: insight from genetic map-based studies of experimental hybrids-hybridization and resistance to parasites. Ecology 80(2):361–370

    Article  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

    Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant Hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19(4):198–207

    Article  PubMed  Google Scholar 

  • Siffelova G, Pavelkova M, Klabouchova A, Wiesner I, Nasinec V, Nasinec I (1998) RAPD fingerprinting of diploid Lolium perenne × hexaploid Festuca arundinacea hybrid genomes. Biol Plant 40(2):183–192

    Article  Google Scholar 

  • Triest L (2001) Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): morphology versus RAPDs. Pl. Syst Evol 226(3–4):143–154

    Article  Google Scholar 

  • Ungerer MC, Baird SJE, Pan J, Rieseberg LH (1998) Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci USA 95:11757–11762

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AD, Xiang QY, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Yang RC (2000) PopGen32 computer program (ver. 1.31) microsoft windows based freeware for population genetic analysis. Http://www.ualberta.ca/∼fyeh/index.htm

  • Yokoyama J, Fukuda T, Yokoyama A, Maki M (2002) The intersectional hybrid between Weigela hortensis and W. maximowiczii (Caprifoliaceae). Bot J Linn Soc 138:369–380

    Article  Google Scholar 

  • Yuzbasioglu E, Ozcan S, Acik L (2006) Analysis of genetic relationships among Turkish cultivars and breeding lines of Lens culinatis Mestile using RAPD markers. Genetic Res Crop Evol 53:507–514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sema Yuzbasioglu for correction of English; Dr. Hayri Duman for providing the two samples of hybrids (4905 and 5169); Meryem Kucuk for drawing Fig. 1. This study was funded by the Erciyes University Research Grant EUBAP-01-052-17 and FBA-03-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertuğrul Yüzbaşıoğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yüzbaşıoğlu, E., Dadandı, M.Y. & Özcan, S. Natural hybridization between Phlomis lycia D. Don × P. bourgaei Boiss., (Lamiaceae) revealed by RAPD markers. Genetica 133, 13–20 (2008). https://doi.org/10.1007/s10709-007-9177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9177-y

Keywords

Navigation